Question 16 (7 marks)

Standing waves are formed on a string of length 4.0 m that is fixed at both ends. The speed of the waves is $240 \mathrm{~m} \mathrm{~s}^{-1}$.
a. Calculate the wavelength of the lowest frequency resonance.
\qquad
\qquad
\qquad
\square
b. Calculate the frequency of the second-lowest frequency resonance.
\qquad
\qquad
\qquad

c. Explain the physics of how standing waves are formed on the string. Include a diagram in your response.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 14 (6 marks)
Figure 13 shows a simple apparatus that can be used to determine the frequency of a tuning fork.

Figure 13
The apparatus consists of two supports and a metal wire that is stretched between a fixed peg and a hanging weight. The wire is under tension.
The tuning fork is set vibrating and is then touched onto the wire close to the left-hand support, which makes the wire vibrate at the same frequency as the tuning fork.
a. Draw a diagram of the simplest standing wave pattern that can exist on the vibrating section of the wire (the fundamental) between the two supports.
b. When the distance between the supports is 0.92 m , the fundamental frequency resonates in the wire.

Calculate the wavelength of the fundamental. Show your working.
\qquad
\qquad

c. Calculate the frequency of the tuning fork if the speed of the waves in the wire is $224 \mathrm{~m} \mathrm{~s}^{-1}$. Show your working.
\qquad
\qquad Hz

Question 13 (3 marks)

In an experimental set-up used to investigate standing waves, a 6.0 m length of string is fixed at both ends, as shown in Figure 12. The string is under constant tension, ensuring that the speed of the wave pulses created is a constant $40 \mathrm{~m} \mathrm{~s}^{-1}$.

Figure 12
In an initial experiment, a continuous transverse wave of frequency 7.5 Hz is generated along the string.
a. Determine the wavelength of the transverse wave travelling along the string.
\qquad
\qquad

b. Will a standing wave form? Give a reason for your answer.
\square
\qquad
\qquad

