.017 PHY	YSICS EXAM 34	
Question 16 (7 marks) Standing waves are formed on a string of length 4.0 m that is fixed at both ends. The speed of the waves is 240 m s^{-1} .		
a.	Calculate the wavelength of the lowest frequency resonance.	2 marks
b.	Calculate the frequency of the second-lowest frequency resonance.	2 marks

SECTION B – Question 16 – continued

c.	Explain the physics of how standing waves are formed on the string. Include a diagram in your response.	3 marks		
		-		
		-		
		-		
		-		
	TURN OVER			

Question 14 (6 marks)

Figure 13 shows a simple apparatus that can be used to determine the frequency of a tuning fork.

The apparatus consists of two supports and a metal wire that is stretched between a fixed peg and a hanging weight. The wire is under tension.

The tuning fork is set vibrating and is then touched onto the wire close to the left-hand support, which makes the wire vibrate at the same frequency as the tuning fork.

a. Draw a diagram of the simplest standing wave pattern that can exist on the vibrating section of the wire (the fundamental) between the two supports.
2 marks

b. When the distance between the supports is 0.92 m, the fundamental frequency resonates in the wire.

Calculate the wavelength of the fundamental. Show your working.

2 marks

m

Hz

c. Calculate the frequency of the tuning fork if the speed of the waves in the wire is 224 m s⁻¹.
Show your working.
2 marks

