Worksheet: Circuits & Ohm's Law

QUESTIONS:

1. Draw a circuit schematic (diagram) to include a **50.0 V** battery, an ammeter, and a resistance of **10.0** Ω in series.

- a. What is the reading on the ammeter?
- b. In which *direction* is the *current* flowing?

2. How much *current* flows through a radio speaker that has a resistance of **4.0** Ω when **16** V is impressed across the speaker?

3. Draw a *circuit diagram* of the circuit described in the question above. Include a **6** V battery, an *ammeter* (labeled with value of *current*), and a *resistance* of **3.0** Ω (the speaker). Also label the direction of the conventional (+) current.

4. The following questions pertain to the circuit diagramed to the right.

a. Lamp A reads a voltage of **12 V**. What is the voltage of **lamp B**?

b. If the ammeters on both branches read the same amount, what does this tell you about the *resistance* of the two branches?

c. If the current flowing in the first branch was **4.0 A** and **6.0 A** in the second branch, what would the **total current** in the circuit be?

5. Draw a series *circuit diagram* showing a 6.0 V battery, a *resistor*, & an *ammeter* reading of 2.0 A.

a. Label: the size of the resistor, the direction of conventional current, the (+) and (-) terminals of the battery.

b. Add a voltmeter to you diagram and indicate the *potential difference* across the resistor.

6. Draw a *circuit diagram* showing a heater with a resistance of **6** Ω , and a potential difference source of **24.0** *V*.

a. Calculate the *current* through the resistance

b. What *thermal energy* is supplied by the heater in 10 seconds? (HINT- use the equation $E = I^2 Rt$ to determine energy)

7. Use the *circuit diagram* to the right to answer the following questions.

a. What is the *current* flowing through this series circuit if the total resistance is 20Ω ?

b. What would the *voltage* across each of the three bulbs be? What could you say about the *brightness* of each of the bulbs?

c. If two of the bulbs had a total resistance of 15Ω , what would the *resistance* of the third bulb be?

d. What would be the *current* flowing through the circuit be is the voltage source was **6.0** V, and each of the lamps had a resistance of **2** Ω ?

8. Draw a *circuit diagram* showing three 10Ω resistors connected in parallel and placed across a 60.0 V battery.

a. What is the **equivalent resistance** of the parallel circuit?

b. What is the *current* through the *entire circuit*?

c. What is the *current* through each *branch* of the circuit?

9. Draw a *circuit diagram* showing the following: a **800.0** Ω resistor, a **40** Ω resistor, and a **20** Ω resistor connected in parallel and connected across a **24.0** V battery.

a. What is the **equivalent resistance** of the parallel circuit?

b. What is the *current* through the *entire circuit*?

c. What is the *current* through each *branch* of the circuit?

10. Answer the following questions about the circuit to the right.

a. What do each of the 4 voltmeters read?

b. If each of the resistors are identical, and the *total current* flowing through this parallel circuit is **12.0 A**, what is the *total resistance* of this circuit?