\qquad Date \qquad Period \qquad

Worksheet: Circuits \& Ohm's Law

Equations:

$$
\text { Electric Potential }=\frac{\text { electric potential energy }}{\text { amount of charge }} \quad 1 \text { volt }=\frac{1 \text { joule }}{\text { coulomb }}
$$

GENERAL EQUATIONS

$$
I=\frac{V}{R} \quad \text { Current }=\frac{\text { voltage }}{\text { resistance }} \quad \text { Amperes }=\frac{\text { volts }}{\text { ohms }} \quad P=I V
$$

SERIES CIRCUITS

$$
I=\frac{V s}{R} \quad R=R_{A}+R_{B}+\ldots . . \quad V s=V 1+V 2+V 3+V 4+\ldots
$$

PARALLEL CIRCUITS

$$
I_{A}=\frac{V}{R_{A}} \quad I=I_{A}+I_{B}+I_{C} \quad \frac{1}{R}=\frac{1}{R_{A}}+\frac{1}{R_{B}}+\frac{1}{R_{C}}
$$

$$
V s=V_{1}=V_{2}=V_{3}=V_{4}+\ldots \ldots
$$

ELECTRICAL CIRCUIT SYMBOLS

QUESTIONS:

1. Draw a circuit schematic (diagram) to include a 50.0 V battery, an ammeter, and a resistance of 10.0Ω in series.
a. What is the reading on the ammeter?
b. In which direction is the current flowing?
2. How much current flows through a radio speaker that has a resistance of 4.0Ω when 16 V is impressed across the speaker?
3. Draw a circuit diagram of the circuit described in the question above. Include a 6 V battery, an ammeter (labeled with value of current), and a resistance of 3.0Ω (the speaker). Also label the direction of the conventional (+) current.
4. The following questions pertain to the circuit diagramed to the right.
a. Lamp A reads a voltage of $\mathbf{1 2} \mathbf{V}$. What is the voltage of lamp \boldsymbol{B} ?

b. If the ammeters on both branches read the same amount, what does this tell you about the resistance of the two branches?
c. If the current flowing in the first branch was $4.0 A$ and $6.0 A$ in the second branch, what would the total current in the circuit be?
5. Draw a series circuit diagram showing a 6.0 V battery, a resistor, \& an ammeter reading of 2.0 A .
a. Label: the size of the resistor, the direction of conventional current, the (+) and (-) terminals of the battery.
b. Add a voltmeter to you diagram and indicate the potential difference across the resistor.
6. Draw a circuit diagram showing a heater with a resistance of 6Ω, and a potential difference source of 24.0 V .
a. Calculate the current through the resistance
b. What thermal energy is supplied by the heater in 10 seconds? (HINT- use the equation $E=I^{2} R t$ to determine energy)
7. Use the circuit diagram to the right to answer the following questions.
a. What is the current flowing through this series circuit if the total resistance is 20Ω ?

b. What would the voltage across each of the three bulbs be? What could you say about the brightness of each of the bulbs?
c. If two of the bulbs had a total resistance of $\mathbf{1 5 \Omega}$, what would the resistance of the third bulb be?
d. What would be the current flowing through the circuit be is the voltage source was 6.0 V , and each of the lamps had a resistance of $\mathbf{2 \Omega}$?
8. Draw a circuit diagram showing three 10Ω resistors connected in parallel and placed across a 60.0 V battery.
a. What is the equivalent resistance of the parallel circuit?
b. What is the current through the entire circuit?
c. What is the current through each branch of the circuit?
9. Draw a circuit diagram showing the following: a 800.0Ω resistor, a 40Ω resistor, and a 20Ω resistor connected in parallel and connected across a 24.0 V battery.
a. What is the equivalent resistance of the parallel circuit?
b. What is the current through the entire circuit?
c. What is the current through each branch of the circuit?
10. Answer the following questions about the circuit to the right.
a. What do each of the 4 voltmeters read?

b. If each of the resistors are identical, and the total current flowing through this parallel circuit is $\mathbf{1 2 . 0}$ A, what is the total resistance of this circuit?
