Each of the following graphs describes the motion of a particle. For each of them: i describe the motion ii find the distance travelled (d) iii displacement (s)
Velocity is measured in m / s and time in seconds.

The particle travels with constant velocity of $6 \mathrm{~m} / \mathrm{s}$ for 10 seconds.
Distance $=$ displacement $=$ area under curve $=6 \times 10=60 \mathrm{~m}$

The particle accelerates uniformly for 5 seconds by which time it has reached $8 \mathrm{~m} / \mathrm{s}$.
$d=s=\frac{1}{2} \times 5 \times 8=20 \mathrm{~m}$

The particle accelerates uniformly for 4 seconds by which time it has reached $6 \mathrm{~m} / \mathrm{s}$. It then decelerates uniformly until it comes to rest after 10 seconds.
$d=s=\frac{1}{2} \times 10 \times 6=30 \mathrm{~m}$
d

The particle travels with constant velocity of $5 \mathrm{~m} / \mathrm{s}$ for 7 seconds. It then decelerates uniformly until it comes to rest after 15 seconds.
$d=s=\frac{7+15}{2} \times 5=55 \mathrm{~m}$

The particle travels with constant velocity of $4 \mathrm{~m} / \mathrm{s}$ for 6 seconds. It then decelerates uniformly until it comes to rest after 8 seconds before changing direction and continuing to accelerate uniformly in the negative direction for a further 4 seconds.

In first 8 seconds $d=\frac{6+8}{2} \times 4=28 \mathrm{~m}$.
To find area of the triangle we first need find acceleration.
$a=\frac{0-4}{2}=-2 \mathrm{~m} \mathrm{~s}^{-2}$. Then final velocity $v=0-2 \times 4=-8 \mathrm{~m} \mathrm{~s}^{-1}$.
So area of the triangle $=\frac{1}{2} \times 4 \times 8=16 \mathrm{~m}$. So $d=28+16=44 \mathrm{~m}$, $s=28-16=8 m$

The particle accelerates uniformly for 1 second by which time it has reached $7 \mathrm{~m} / \mathrm{s}$. It then decelerates uniformly until it comes to rest after 2.5 seconds before changing direction and continuing to accelerate uniformly in the negative direction for a further 2.5 seconds.

In first 2.5 seconds $d=\frac{1}{2} \times 2.5 \times 7=8.75 \mathrm{~m}$.
To find area of the second triangle we first need find acceleration.
$a=\frac{0-7}{1.5}=-4.7 \mathrm{~m} \mathrm{~s}^{-2}$. Final velocity $v=0-4.7 \times 2.5=-11.75 \mathrm{~m} \mathrm{~s}^{-1}$.
So area of the triangle $=\frac{1}{2} \times 2.5 \times 11.75=14.69 \mathrm{~m}$.
So $d=8.75+14.69=23.44 m$,
$s=8.75-14.69=-5.94 m$

The particle travels with constant velocity of $10 \mathrm{~m} / \mathrm{s}$ for 1 second. It then decelerates uniformly until it comes to rest after 3 seconds before changing direction and continuing to accelerate uniformly in the negative direction for a further 5 seconds.
In first 3 seconds $d=\frac{1+3}{2} \times 10=20 \mathrm{~m}$.
To find area of the triangle we first need find acceleration.
$a=\frac{0-10}{2}=-5 \mathrm{~m} \mathrm{~s}^{-2}$.
Final velocity $v=0-5 \times 5=-25 \mathrm{~ms}^{-1}$.
So area of the triangle $=\frac{1}{2} \times 5 \times 25=62.5 \mathrm{~m}$.
So $d=20+62.5=82.5 \mathrm{~m}$,
$s=20-62.5=-42.5 m$

An object starting at $-4 \mathrm{~m} / \mathrm{s}$ slows down uniformly until it comes to rest after 3 seconds before changing direction and continuing to accelerate uniformly for a further 3 seconds. The particle then decelerates uniformly until it comes to rest after further 4 seconds before changing direction and continuing to accelerate uniformly in the negative direction for a further 3 seconds.
In first 3 seconds $d=\frac{1}{2} \times 3 \times 4=6 \mathrm{~m}$
To find area of the second triangle we first need find acceleration.
$a=\frac{0-(-4)}{3}=\frac{4}{3} \mathrm{~m} \mathrm{~s}^{-2}$.
Velocity at 6 seconds $v=0+\frac{4}{3} \times 3=4 \mathrm{~m} \mathrm{~s}^{-1}$.
Area of the second triangle $=\frac{1}{2} \times 7 \times 4=14 \mathrm{~m}$.
To find area of the third triangle we first need find acceleration.
$a=\frac{0-4}{4}=-1 \mathrm{~ms}^{-2}$.
Final velocity $v=0-1 \times 3=-3 \mathrm{~m} \mathrm{~s}^{-1}$.
Area of the third triangle $=\frac{1}{2} \times 3 \times 3=4.5 \mathrm{~m}$.
So $d=6+14+4.5=24.5 \mathrm{~m}$,
$s=-6+14-4.5=3.5 m$

