1. A body with constant acceleration starts with velocity $15 \mathrm{~m} / \mathrm{s}$. At the end of the eleventh second its velocity is $48 \mathrm{~m} / \mathrm{s}$. What is its acceleration?
$u=15 \mathrm{~m} / \mathrm{s}, v=48 \mathrm{~m} / \mathrm{s}, t=11 \mathrm{~s}$
$v=u+a t \quad a=\frac{v-u}{t}=3 \mathrm{~ms}^{-2}$
2. A body starts from a fixed point O with initial velocity $-10 \mathrm{~m} / \mathrm{s}$ and uniform acceleration $4 \mathrm{~m} / \mathrm{s} 2$. Find:
a the displacement of the particle from O after six seconds
$x=u t+\frac{a t^{2}}{2} x=-10 \times 6+\frac{4 \times 6^{2}}{2}=12 m$
b the velocity of the particle after six seconds
$v=u+a t v=-10+4 \times 6=14 \mathrm{~ms}^{-1}$
c the time when the velocity is zero
$v=u+a t 0=-10+4 t t=2.5 \mathrm{~s}$
d the distance travelled in the first six seconds
Position at the time 2.5 s (at that point body turns around) is
$x=-10 \times 2.5+\frac{4 \times 2.5^{2}}{2}=-12.5 \mathrm{~m}$
So distance is $12.5+12.5+12=37 \mathrm{~m}$
3. a A stone is thrown vertically upwards from ground level at $21 \mathrm{~m} / \mathrm{s}$.
i What is its height above the ground after two seconds?
Let choose up as positive
$x=21 t-\frac{9.8 t^{2}}{2} t=2 s x=22.4 m$
ii What is the maximum height reached by the stone?
$v^{2}=u^{2}+2 a s 0=21^{2}-2 \times 9.8 s s=22.5 m$
b If the stone is thrown vertically upwards from a cliff 17.5 m high at $21 \mathrm{~m} / \mathrm{s}$:
i how long will it take to strike the ground at the base of the cliff?
$x=17.5+21 t-4.9 t^{2} \quad x=04.9 t^{2}-21 t-17.5=0$
$t=\frac{21+\sqrt{21^{2}+4 \times 4.9 \times 17.5}}{2 \times 4.9}=5 \mathrm{~s}$
ii what is the velocity of the stone when it hits the ground?
$v=u+a t \quad v=21-9.8 \times 5=-28 \mathrm{~ms}^{-1}$
4. A basketball is thrown vertically upwards with a velocity of $14 \mathrm{~m} / \mathrm{s}$. Find: a the time taken by the ball to reach its maximum height
$v=u+a t \quad 0=14-9.8 t \quad t=\frac{14}{9.8}=1.43 \mathrm{~s}$
b the greatest height reached by the ball
$v^{2}=u^{2}+2$ as $0=14^{2}-2 \times 9.8 s \quad s=10 m$
\mathbf{c} the time taken for the ball to return to the point from which it is thrown
$t=2 \times \frac{14}{9.8}=2.86 \mathrm{~s}$
5. A car sliding on ice is decelerating at the rate of $0.1 \mathrm{~m} / \mathrm{s} 2$. Initially the car is travelling at $20 \mathrm{~m} / \mathrm{s}$. Find:
a the time taken before it comes to rest
$v=u+a t \quad 0=20-0.1 t t=200 s$
b the distance travelled before it comes to rest
$v^{2}=u^{2}+2 a s 0=20^{2}-2 \times 0.1 s s=2000 m$
6. An object is dropped from a point 100 m above the ground. The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s} 2$. Find:
a the time taken by the object to reach the ground
$s=u t+\frac{a t^{2}}{2} u=0 \quad 100=\frac{9.8 t^{2}}{2} t=4.5 s$
b the velocity at which the object hits the ground
$v=u+a t v=9.8 \times 4.5=44.3 \mathrm{~m} \mathrm{~s}^{-1}$
7. An object is projected vertically upwards from a point 50 m above ground level (acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s} 2$). If the initial velocity is $10 \mathrm{~m} / \mathrm{s}$, find:
a the time taken by the object to reach the ground (give answer correct to two decimal places)
$x=50+10 t-4.9 t^{2} \quad x=04.9 t^{2}-10 t-50=0$
$t=\frac{10+\sqrt{10^{2}+4 \times 4.9 \times 50}}{2 \times 4.9}=4.37 \mathrm{~s}$
b the velocity at that point
$v=u+a t \quad v=10-9.8 \times 4.37=-32.86 \mathrm{~m} \mathrm{~s}^{-1}$
8. A book is pushed across a table and is subjected to a retardation of $0.8 \mathrm{~m} / \mathrm{s} 2$ due to friction (retardation is acceleration opposite in direction to motion). If the initial speed of the book is $1 \mathrm{~m} / \mathrm{s}$, find:
a the time taken for the book to stop
$v=u+a t \quad 0=1-0.8 t t=1.25 s$
b the distance over which the book slides
$s=u t+\frac{a t^{2}}{2} \quad s=1 \times 1.25-\frac{0.8 \times 1.25^{2}}{2}=0.625 \mathrm{~m}$
9. A box is pushed across a bench and is subjected to a constant retardation, $a \mathrm{~m} / \mathrm{s} 2$, due to friction. The initial speed of the box is $1.2 \mathrm{~m} / \mathrm{s}$ and the box travels 3.2 m before stopping. Find:
a the value of a
$v^{2}=u^{2}+2 a s \quad 0=1.2^{2}-2 a \times 3.2 a=0.23 \mathrm{~ms}^{-2}$
b the time taken by the box before it comes to rest
$s=\frac{v+u}{2} t \quad 3.2=\frac{1.2}{2} t \quad t=5.3 \mathrm{~s}$
10. A particle travels in a straight line with a constant velocity of $4 \mathrm{~m} / \mathrm{s}$ for 12
seconds. It is then subjected to a constant acceleration in the opposite direction for 20 seconds which returns the particle to its original position. Find:
a the acceleration of the particle
In 12 seconds particle will travel 48 m .
$x=x_{0}+u t+\frac{a t^{2}}{2} 0=48+4 \times 20-\frac{a \times 20^{2}}{2} \quad a=0.64 \mathrm{~ms}^{-2}$
b the time the particle is travelling back towards its original position
Find time taken to stop. $v=u+a t \quad 0=4-0.64 t \quad t=6.25 \mathrm{~s}$
So time of the travel in the opposite direction 20-6.25=13.75 s
11. A child slides from rest down a slide 4 m long. The child undergoes constant acceleration and reaches the end of the slide travelling at $2 \mathrm{~m} / \mathrm{s}$. Find:
a the time taken to go down the slide
$s=\frac{v+u}{2} t \quad 4=\frac{2}{2} t \quad t=4 s$
b the acceleration which the child experiences

$$
v=u+a t \quad 2=0+a \times 4 \quad a=0.5 m^{-2}
$$

