1. A body with constant acceleration starts with velocity $15 \mathrm{~m} / \mathrm{s}$. At the end of the eleventh second its velocity is $48 \mathrm{~m} / \mathrm{s}$. What is its acceleration?
2. A body starts from a fixed point O with initial velocity $-10 \mathrm{~m} / \mathrm{s}$ and uniform acceleration $4 \mathrm{~m} / \mathrm{s} 2$. Find:
a the displacement of the particle from O after six seconds
b the velocity of the particle after six seconds
c the time when the velocity is zero
d the distance travelled in the first six seconds
3. a A stone is thrown vertically upwards from ground level at $21 \mathrm{~m} / \mathrm{s}$.
i What is its height above the ground after two seconds?
ii What is the maximum height reached by the stone?
b If the stone is thrown vertically upwards from a cliff 17.5 m high at $21 \mathrm{~m} / \mathrm{s}$: i how long will it take to strike the ground at the base of the cliff?
ii what is the velocity of the stone when it hits the ground?
4. A basketball is thrown vertically upwards with a velocity of $14 \mathrm{~m} / \mathrm{s}$. Find: a the time taken by the ball to reach its maximum height b the greatest height reached by the ball c the time taken for the ball to return to the point from which it is thrown
5. A car sliding on ice is decelerating at the rate of $0.1 \mathrm{~m} / \mathrm{s} 2$. Initially the car is travelling at $20 \mathrm{~m} / \mathrm{s}$. Find:
a the time taken before it comes to rest
b the distance travelled before it comes to rest
6. An object is dropped from a point 100 m above the ground. The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s} 2$. Find:
a the time taken by the object to reach the ground
b the velocity at which the object hits the ground
7. An object is projected vertically upwards from a point 50 m above ground level (acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s} 2$). If the initial velocity is $10 \mathrm{~m} / \mathrm{s}$, find:
a the time taken by the object to reach the ground (give answer correct to two decimal places)
b the velocity at that point
8. A book is pushed across a table and is subjected to a retardation of $0.8 \mathrm{~m} / \mathrm{s} 2$ due to friction (retardation is acceleration opposite in direction to motion). If the initial speed of the book is $1 \mathrm{~m} / \mathrm{s}$, find:
a the time taken for the book to stop
b the distance over which the book slides
9. A box is pushed across a bench and is subjected to a constant retardation, $a \mathrm{~m} / \mathrm{s} 2$, due to friction. The initial speed of the box is $1.2 \mathrm{~m} / \mathrm{s}$ and the box travels 3.2 m before stopping. Find:
a the value of a
b the time taken by the box before it comes to rest
10. A particle travels in a straight line with a constant velocity of $4 \mathrm{~m} / \mathrm{s}$ for 12 seconds. It is then subjected to a constant acceleration in the opposite direction for 20 seconds which returns the particle to its original position. Find:
a the acceleration of the particle
b the time the particle is travelling back towards its original position
11. A child slides from rest down a slide 4 m long. The child undergoes constant acceleration and reaches the end of the slide travelling at $2 \mathrm{~m} / \mathrm{s}$. Find:
a the time taken to go down the slide
b the acceleration which the child experiences
