Multiple choice solutions

Example 12010 Question 18, 65\%

The power supply was set to $20.8 \mathrm{~V}_{\text {RMs }}$. Therefore $\mathrm{V}_{\mathrm{P}}=20.8 \times \sqrt{ } 2$

$$
=29.4 \mathrm{~V} \text {, }
$$

$\therefore \mathrm{V}_{\mathrm{Ptop}}=29.4 \times 2$
$=58.8$
$\therefore \mathrm{D}$ (ANS)

Example 21984 Question 65

By definition, the peak value is $\sqrt{2}$ times the RMS. $\therefore \mathrm{V}_{\text {peak }}=0.7 \mathrm{~V}$
The period is $\frac{1}{50}=0.02 \mathrm{sec}$
$\therefore \mathrm{D}$ (ANS)

Example 31978 Question 68, 43\%

No real transformer is 'ideal'. Therefore all real transformers lose energy (as heat, noise).
\therefore A (ANS)

Example 42006 Question 13, 75\%

Transformer T_{1} is a step up transformer.
\therefore The number of turns in the secondary needs to be greater than the number of turns in the primary.
To step the voltage up from 250 to 22000 , you need the number of turns in the secondary to be $\frac{22000}{250}$ times the number of turns in the primary.
$\frac{22000}{250}=88$.
$\therefore 500 \times 88=44000$.
$\therefore \mathrm{C}$ (ANS)

Example 52011 QLD Question 13

Use: $\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$

$$
\frac{200.0}{25.0}=\frac{400}{\mathrm{~N}}
$$

$\therefore \mathrm{N}=50$
$\therefore \mathrm{B}$ (ANS)

Example 62001 NSW Question 11

Use:
$\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$
$\frac{110}{V_{\text {out }}}=\frac{60}{2300}$
$\therefore \mathrm{V}_{\text {out }}=\frac{110 \times 2300}{60}$
$\therefore \mathrm{V}_{\text {out }}=4,217 \mathrm{~V}$
\therefore D (ANS)

Example 72003 NSW Question 8

Use: $\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$

$$
\frac{240}{6000}=\frac{N_{1}}{N_{2}}
$$

$\therefore \frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\frac{25}{1}$
$\therefore \mathrm{C}$ (ANS)

Example 82006 NSW Question 10

The secondary coil will show two spikes of twice the size (of the primary, due to twice as many turns), when the switch is turned on and off. The spikes will be different depending on whether the switch is being turned on or off. The voltage across the input will start at zero, increase to a constant and then decrease to zero.
\therefore A (ANS)

Example 92010 NSW Question 10

The AC supply is the input. Therefore, Part 2 is the primary coil and Part 1 the secondary. The secondary coil has more turns, therefore, it is a step-up transformer.
$\therefore \mathrm{D}$ (ANS)

Example 102012 NSW Question 10

A step-down transformer is required. Therefore, the secondary needs to have fewer turns than the primary. The ratio of turns is 10:1. Either side could be the input.
$\therefore \mathrm{D}$ (ANS)

Example 112016 NSW Question 1

The phone requires a much smaller voltage than 230 V . The process of converting $A C$ to $D C$ is typically done using diodes (no longer on the course).
$\therefore \mathrm{D}$ (ANS)

Example 122017 NSW Question 14

The voltage across the resistor, V_{1}, will be constant for 2 seconds and then drop to zero for 2 seconds. There will be a spike in voltage V_{2} when the current in the resistor changes from a constant value to zero at $t=2 \mathrm{sec}$.
\therefore A (ANS)

Example 132002 NSW Question 6

Reducing the current in the wires will reduce the heating in the wires. To deliver a fixed amount of power, if you increase the voltage, the current will decrease.
$\therefore \mathrm{A}$ (ANS)

Example 141984 Question 54, 47\%

The power supplied is given by $\mathrm{P}=\mathrm{VI}$.
The resistance of power lines is assumed to be constant (or close to constant).
To deliver the Power, if the Voltage is stepped up, then the current will be reduced by the same factor. In the equation $\mathrm{P}_{\text {loss }}=\mathrm{V}^{2} / \mathrm{R}$, the value of V is the potential drop across the lines. IT IS NOT the potential.
If you transmit low voltage and high current, the potential drop across the lines will be given by $\mathrm{V}=\mathrm{i}$, with a high current this means $\mathrm{V}_{\text {drop }}$ will be large.
To minimise loss, the transmission is done at high voltage but with a low current.

$\therefore \mathrm{B}, \mathrm{D}$ (ANS)

Example 152010 NSW Question 9

To reduce power loss in the cables, the voltage is stepped up. This means that to deliver a set amount of power, then the current is decreased. This minimises the effects of the resistance of the cables

$$
\therefore \mathrm{C} \text { (ANS) }
$$

Example 162013 NSW Question 10

The transformer needs to be a step-up at the power station, then it will be stepped down in stages to eventually power the laptop
$\therefore \mathrm{C}$ (ANS)

Example 172014 NSW Question 5

The high voltage lines have a single strand (called the Guardian wire, or Earth Wire) above the complex of conductors on the pylons. This is designed to attract the lightning (by being higher than the other wires), and send it to the ground, without impacting on the power carrying cables.
\therefore B (ANS)

Example 181982 Question 71, 65\%

The resistance of a wire is given by $R=\rho \frac{L}{A}$, where ρ (resistivity) is a property of the material.
Therefore, doubling the length would double the resistance, but the resistivity, ρ, would remain the same

\therefore B (ANS)

Question 192007 Question 10, 65\%
The alternator gradually speeds up from stationary implies that the frequency increases, i.e. the period decreases. As the frequency increases the output voltage will also increase.
$\therefore \mathrm{C}$ (ANS)

Extended questions

Example 201985 Question 49
Use $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$,
$\therefore \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}$
$\therefore R=\frac{6^{2}}{24}$
$\therefore 1.5 \Omega$ (ANS)
Example 211985 Question 50
Use $V_{\text {PEAK }}=V_{\text {RMS }} \times \sqrt{2}$
$=6 \times \sqrt{2}$
$\therefore 8.5 \mathrm{~V}$
(ANS)
Example 221990 Question 57
$V_{\text {RMS }}=V_{\text {PEAK }} \div \sqrt{2}$
$\therefore \mathrm{V}_{\text {PEAK }}=5 \div \sqrt{2}$
$\therefore \mathrm{V}_{\text {PEAK }}=3.5(4) \mathrm{V}$ (ANS)
Example 231990 Question 59
Use V = iR
Use either peak values OR RMS values.
$\therefore 5=3 \times R$
$\therefore R=1.67 \Omega$ (ANS)
Example 241985 Question 52, 51\%
Use $R=\rho \frac{L}{A}$,
If the length is doubled the resistance will double. If the diameter is doubled the area will increase by a factor of 4 , so the resistance will decrease by a factor of 4 . Overall the resistance will decrease by a factor of 2

$$
\therefore 50 \Omega \text { (ANS) }
$$

Example 252018 NSW Question 30

An increase in the number of appliances being used will increase the energy demand. This will be an increase in the current required, because the rate of energy use (Power) is given by $\mathrm{P}=\mathrm{VI} . \mathrm{V}$ is fixed at 240 V by the secondary of T 2 .
This increase in current will lead to an increase in the current in the transmission lines, which will decrease the voltage in the primary of T 2 , due to transmission losses. This means that more current must be supplied to T1.

The power station will need to supply more energy to meet the demand. The generators can't spin more quickly as that would change the frequency of the AC, so the field may need to be increased.

Example 262018 WA Question 1a

Use:
$\frac{V_{P}}{V_{S}}=\frac{N_{P}}{N_{S}}$
$\frac{415}{11000}=\frac{N_{P}}{N_{S}}$
$\therefore \frac{\mathrm{N}_{\mathrm{p}}}{\mathrm{N}_{\mathrm{S}}}=\frac{1}{26.5}$
\therefore Ratio $=1: 26.5$ (ANS)

Example 272018 WA Question 1b

Use $P_{\text {in }}=P_{\text {out }}$

$$
\begin{aligned}
& \therefore(\mathrm{VI})_{\text {in }}=(\mathrm{VI})_{\text {out }} \\
& \therefore 300 \times 10^{3}=11000 \times \mathrm{I}_{\mathrm{S}} \\
& \therefore \mathrm{I}_{\mathrm{S}}=\frac{300 \times 10^{3}}{11000} \\
& \therefore \mathrm{I}_{\mathrm{S}}=\mathbf{2 7 . 3} \mathrm{A} \text { (ANS) }
\end{aligned}
$$

Example 281984 Question 70,
If the transformer is ideal, i.e. 100% efficient, then $P_{\text {in }}=P_{\text {out }}$
$\therefore(\mathrm{VI})_{\text {in }}=(\mathrm{VI})_{\text {out }}$
The Voltage is directly proportional to the number of turns
$\therefore N_{1} \times I_{1}=N_{2} \times I_{2}$
$\therefore \mathbf{l}_{2}=\mathbf{l}_{1} \mathbf{N}_{1} / \mathbf{N}_{2}$ (ANS)

Example 292008 Question 14, 85\%

Use:
$\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$
$\frac{240}{18}=\frac{N_{1}}{30}$
$\mathrm{N}_{1}=30 \times \frac{240}{18}$
$\therefore \mathrm{N}_{1}=400$ (ANS)

Example 302008 Question 15, 73\%

Since the power input is the same as the power output. The input power must also be 40 W . The primary voltage is 240 V .
Using: $\mathrm{P}=\mathrm{VI}$

$$
\begin{aligned}
& \therefore \mathrm{I}=\frac{\mathrm{P}}{\mathrm{~V}} \\
& \therefore \mathrm{I}=\frac{40}{240} \\
& \therefore \mathrm{I}=\mathbf{0 . 1 7} \text { A (ANS) }
\end{aligned}
$$

Example 311997 Question 4, 40\%

From reading the stem of the question very carefully, we glean that the currents in the two motors are different, so they must be connected in parallel, not in series.

You need to show that the generator supplied 230 V , and that motor 1 used 13 A , with 220 V across it, and motor 2 used 10 A with 220 V across it.
You will also need to consider that the charge loses 10 V of PD along the lines.

Example 321997 Question 5, 32\%

The total power $=\mathrm{VI}$, where V is the voltage that the power is supplied at $(230 \mathrm{~V})$, and I is the total current supplied, (23 amp)

$$
\begin{aligned}
P & =230 \times 23 \\
& =5290 \mathrm{~W} \\
& =5.29 \times 10^{\mathbf{3}} \mathbf{W} \text { (ANS) }
\end{aligned}
$$

Example 331997 Question 6, 58\%
The total power supplied is 5290 W .
Motor 1 uses $\mathrm{P}=\mathrm{VI}$

$$
\begin{aligned}
& =220 \times 13 \\
& =2860 \mathrm{~W}
\end{aligned}
$$

Motor 2 uses $\mathrm{P}=\mathrm{VI}$

$$
\begin{aligned}
& =220 \times 10 \\
& =2200 \mathrm{~W}
\end{aligned}
$$

So total power used by both motors is

$$
2860+2200=5060 \mathrm{~W}
$$

$\therefore 5290-5060=230 \mathrm{~W}$, must be the power being lost in the lines.
The other option was to consider that there was a voltage drop of 10 V across the lines, so if the lines were carrying a current of 23 Amp , then the power loss in the lines.

$$
\begin{aligned}
& =V \times I \\
& =10 \times 23 \\
& =230 \text { Watt (ANS) }
\end{aligned}
$$

Question 342012 Question 4a, 88\%

Power $=\mathrm{VI}$

$$
\begin{aligned}
& =900 \times 50 \\
& =45 \mathrm{~kW} \text { (ANS) }
\end{aligned}
$$

Question 352012 Question 4b, 55\%
Use V = iR
Where $V=1000 \mathrm{~V}$, and R is a total of 25 A
$\therefore 1000=\mathrm{i} \times 25$
$\therefore \mathrm{i}=40 \mathrm{~A}$ (ANS)

Question 362012 Question 4c, 50\%

There will be a voltage drop along the wires. This is given by $\mathrm{V}=\mathrm{i} \mathrm{R}$
$\therefore \mathrm{V}=40 \times 7$
$\therefore \mathrm{V}_{\text {drop }}=280 \mathrm{~V}$
$\therefore \mathrm{V}_{\text {supplied to motor }}=1000-280$
$=720 \mathrm{~V}$

The motor will not run properly, as it requires $900 \mathrm{~V} . \therefore$ the pump will not operate correctly.

Question 372012 Question 4d, 50\%

First change

Use step-up transformer to increase the voltage that the power is delivered along the lines, and then use a step-down transformer at the other end.
Since the power delivered is given by
$P=V I$, if V is increased then I will decrease to deliver the same power.
The energy losses in the wire are given by
$I^{2} R$, so this will lower the energy losses due to heating in the wire.

Second change

Change the material that the wire is made from to one of lower resistance. This will lower the voltage drop across the transmission lines, which will lead to more power being available for the motor.

Example 382011 Question 13, 85\%
Use Power = VI

$$
\begin{aligned}
& =50,000 \times 15 \\
& =750,000 \mathrm{~W} \quad \text { (ANS) }
\end{aligned}
$$

(We are finding the power, so we need to use the RMS values for the voltage and current.)

Example 392011 Question 14, 57\%

Using $P=V I$, if the same power is to be delivered, then the lower voltage means a higher current.
Power loss in the wires is $P=I^{2} R$
Therefore a greater current increases the power loss.
Example 402011 Question 15, 85\%
Use power loss $=I^{2} \mathrm{R}$
$\therefore \mathrm{R}=\frac{9000}{15^{2}}$
$=40 \Omega$ (ANS)
(don't forget to square I)
Example 412011 Question 16, 75\%
Since the transformer is ideal (as are all transformers on VCE exams), we can use
$\mathrm{Vl} \mathrm{lin}_{\text {in }}=\mathrm{VI}_{\text {out }}$
$\therefore 49400 \times I_{\text {primary }}=250 \times I_{\text {secondary }}$
$\therefore \frac{49400}{250}=\frac{\mathrm{I}_{\text {secondary }}}{\mathrm{I}_{\text {primary }}}$
$\therefore \frac{\mathrm{I}_{\text {secondary }}}{\mathrm{I}_{\text {primary }}}=198$ (ANS)
(Don't leave your answer as a fraction).
Question 422009 Question 9, 90\%
Use power = VI

$$
\begin{aligned}
\therefore P & =500 \times 20 \\
\therefore P & =10000 \\
& =1.0 \times 10^{4} \mathbf{W} \text { (ANS) }
\end{aligned}
$$

Question 432009 Question 10, 75\%
The power loss in the lines is $\mathrm{P}_{\text {loss }}=\mathrm{i}^{2} \mathrm{R}$
$\therefore \mathrm{P}_{\text {loss }}=20^{2} \times 10$
(Use the total resistance of the wires)
$\therefore \mathrm{P}_{\text {loss }}=4000$
$\therefore \mathrm{P}_{\text {loss }}=4000 \mathrm{~W}$ (ANS)

Question 442009 Question 11, 63\%

The output voltage of the generator is 500 V .
The potential drop across each line is given by $\mathrm{V}=\mathrm{i} \mathrm{R}$
$\therefore \mathrm{V}=20 \times 5$
$\therefore \mathrm{V}=100 \mathrm{~V}$ across each line.
The total of the potential drops of the circuit is 200 V
Therefore the voltage supplied to the lights is $500-200$
$=300 \mathrm{~V}$ (ANS)

Question 452009 Question 12, 75\%

The step -up transformer will increase the voltage from 500 V to
$\therefore 5000 \mathrm{~V}$ (ANS)
Question 462009 Question 13, 80\%

The step-down transformer has a ratio of 10:1
Therefore the number of turns has to have this ratio
$\therefore 4800 \div 10=480$
$\therefore 480$ turns (ANS)

Question 472009 Question 14, 55\%

The step-up transformer increases the voltage by a factor of 10 . To deliver the same power $(\mathrm{P}=\mathrm{VI})$ the current decreases by a factor of 10.
Therefore the new current is $20 \div 10=2 \mathrm{~A}$
The power loss in the lines is given by
$P_{\text {loss }}=i^{2} R$

$$
\therefore P_{\text {loss }}=2^{2} \times 10
$$

(Use the total resistance of the wires)
$\therefore P_{\text {loss }}=40$
$\therefore \mathrm{P}_{\text {loss }}=40 \mathrm{~W}$ (ANS)
Question 482009 Question 15, 47\%
With the step-up transformer in place the current in the cables is 2.0 A .
The output voltage of the step-up transformer is 5000 V .
The potential drop across each line is given by $V=i R$
$\therefore \mathrm{V}=2 \times 5$
$\therefore \mathrm{V}=10 \mathrm{~V}$ across each line.
The total of the potential drops of the circuit is 20 V
Therefore the voltage supplied to the step-down transformer is $5000-20$ $=4980 \mathrm{~V}$
The transformer steps this voltage down by a factor of 10, so the output voltage of the step-down transformer is $4980 \div 10$

$$
\text { = } 498 \text { V (ANS) }
$$

Example 492006 Question 9, 60\%

The power being used is $10 \times 10^{5} \mathrm{~W}$. This power is supplied at a voltage of 250 V .
Using $\mathrm{P}=\mathrm{VI}$
Gives $10 \times 10^{5}=250 \times 1$

$$
\begin{aligned}
\therefore I & =\frac{1 \times 10^{5}}{250} \\
& =400 \mathrm{~A} \text { (ANS) }
\end{aligned}
$$

Example 502006 Question 10, 60\%
Assume that the transformer is ideal,
\therefore Powerin $=$ Powerout
$\therefore(\mathrm{VI})_{\text {IN }}=(\mathrm{VI})_{\text {OUT }}$
$\therefore 22000 \times I=10 \times 10^{5}$
$\therefore I=\frac{1 \times 10^{5}}{22000}$
$\therefore \mathrm{I}=4.55 \mathrm{Amp}$ (ANS)
(rounded off to 2 decimal places)

Example 512006 Question 11, 60\%

When 100 kW of power is being used in the village the current in the high voltage lines is 4.55 Amp .
The power loss in the lines $=i^{2} R$
Where $\mathrm{R}=2 \Omega$

$$
\begin{aligned}
& =4.55^{2} \times 2 \\
& =41 \mathrm{~W}(\text { ANS })
\end{aligned}
$$

Example 522006 Question 12, 60\%

The power being delivered is given by $\mathrm{P}=\mathrm{VI}$. The power loss in the cables is given by $\mathrm{P}=I^{2} \mathrm{R}$.
To minimise power loss in the cables either 'l' or ' R ' need to be kept to a minimum. The resistance of the cables is difficult to control or influence, so it is best to minimise ' l '.

As the power being delivered is given by $\mathrm{P}=\mathrm{VI}$, then to keep the power delivered constant, if ' l ' decreases then ' V ' needs to increase by the same factor.
An increase in V allows a decrease in I, which means that losses related to $I^{2} R$ are lowered.
Example 531999 Question 1, 70\%
Use $\quad \mathrm{P}=\mathrm{V} \times 1$

$$
\begin{aligned}
& 60=240 \times 1 \\
& \therefore 1 \quad=60 \div 240 \\
& \\
& \\
& =0.25 \text { Amp (ANS) }
\end{aligned}
$$

Example 541999 Question 2, 78\%

The ratio of the number of turns in the primary coil : secondary coil is the same as the input voltage : output voltage. Remember always think about the 'voltages'.

$$
\begin{aligned}
& \therefore \quad \frac{264}{240}=\frac{1000}{' x '} \\
& \therefore x=\frac{240 \times 1000}{264} \\
& \therefore x=909 \text { turns (ANS) }
\end{aligned}
$$

Example 551999 Question 3, 60\%

The voltage across globe ' x ' needs to be 24 V .
The current in both globes will be the same, because they are connected in series.
The current in the 240 V globe is found from

$$
\begin{aligned}
& P=V \times I \\
& 60=240 \times I \\
& I=0.25 \mathrm{Amp}
\end{aligned}
$$

\therefore the power in the 24 V globe

$$
\begin{aligned}
P & =V \times 1 \\
& =24 \times 0.25 \\
& =6 \text { Watt (ANS) }
\end{aligned}
$$

Example 561999 Question 10, 60\%
If the transformer is ideal then the power out = power in
$\therefore \quad 500 \times 10^{3} \times 300=20 \times 10^{3} \times 1$
$\therefore \quad \therefore \mathrm{I}=\left(500 \times 10^{3} \times 300\right) / 20 \times 10^{3}$
$\therefore \quad \therefore \mathrm{I}=\mathbf{7 5 0 0} \mathbf{~ A m p}$ (ANS)
Example 571999 Question 11, 70\%
Power loss in transmission lines is given by $i^{2} R$

$$
\begin{aligned}
& =300^{2} \times 8 \\
& =720000 \\
& =7.2 \times 10^{5} \mathrm{~W} \text { (ANS) }
\end{aligned}
$$

Example 581999 Question 12, 45\%

The voltage drop will be given by $P=\Delta V \times I$
$7.2 \times 10^{5}=\Delta V \times 300$
$\Delta \mathrm{V}=7.2 \times 10^{5} \div 300$
$\Delta V=2400 \mathrm{~V}$
\therefore the Voltage at the local area transformer
$=500000-2400$
$=4.98 \times 10^{5} \mathrm{~V}$ (ANS)
(Correct to 3 sig. figs.)

Example 591998 Question 2

If the Power loss is given by $\mathrm{i}^{2} \mathrm{R}$

$$
\begin{aligned}
\therefore P & =10^{2} \times 3 \\
& =300 \mathrm{~W} \\
& =3.0 \times 10^{2} \mathbf{W} \text { (ANS) }
\end{aligned}
$$

(correct to 2 sig. figs)

Example 601998 Question 3

Power losses due to heating in transmission lines are given by $P=i^{2} R$.
To minimise this we need to minimise I. Since the power input is $P=V \times I$, this means we need to increase V as much as possible.
We use a step-up transformer at ' T_{1} '. The step-up transformer steps up the voltage but steps down the current, resulting in a lower electric current in the cables and reduced power loss within the cables.
We then need to use a step-down transformer ' T_{2} ' at the motor, to reduce the voltage to the original value, 400 V .

Example 611998 Question 4

If the initial current was 10 A , and the new current is 0.5 A , then the current has decreased by a factor of 20. This means that the potential difference between A and B must increase by a factor of 20 . This is because in ideal transformers the power in = power out.
So $\mathrm{VI}_{\text {in }}=\mathrm{VI}_{\text {out }}$.
So the new voltage across $A B$ will be

$$
\begin{aligned}
400 \times 20 & =8,000 \mathrm{~V} \\
& =8.0 \times 10^{\mathbf{3}} \mathrm{V} \text { (ANS) }
\end{aligned}
$$

Example 621998 Question 5

The voltage across $A B$ increases by a factor of 20 . So it must be a step-up transformer. This means that the number of turns in the primary will be $5000 \div 20=250$ turns.

Example 631997 Question 1, 80\%

The ratio of the number of turns in the primary coil : secondary coil is the same as the input voltage : output voltage. Remember always think about the 'voltages'.

$$
\begin{aligned}
& \therefore \quad \frac{240}{110}=\frac{1440}{' x '} \\
& \therefore x=\frac{1440 \times 110}{240} \\
& \therefore x=660 \text { turns (ANS) }
\end{aligned}
$$

(Check that your answer makes sense by asking the following questions. Is it a 'step-down' or 'stepup' transformer? In this case it is a step-down transformer because the output voltage is less than the input voltage. This then means that the number of turns in the secondary coil must be less than the primary coil.)

Example 641997 Question 2, 40\%

We are told that the transformer is 'ideal'. This means that the power in = power out.
So $(V \times I)_{\text {in }}=(V \times I)_{\text {out. }}$. The power out is the rating of the globe. It is rated as 220 W , so the power in must equal 220 W .
So $P_{\text {in }}=220=V \times 1$

$$
\begin{aligned}
& =240 \times 1 \\
\therefore I \quad & =220 \div 240 \\
& =0.92 \text { Amp (ANS) }
\end{aligned}
$$

Example 651997 Question 3, 25\%

In Method 1, some power is used in the resistor, this is given by $\mathrm{V}^{2} \div \mathrm{R}$.

$$
V=240-110
$$

$=130$ Volt (sum of voltages drops around the circuit $=240 \mathrm{~V}$)
So power used in resistor

$$
\begin{aligned}
& =130^{2} \div 65 \\
& =260 \mathrm{~W}
\end{aligned}
$$

\therefore total power used in circuit

$$
\begin{aligned}
& =260+220 \\
& =480 \mathrm{~W}
\end{aligned}
$$

In method 2, the power loss is 220 W . Because the globe is the only appliance that is using power.

Example 661987 Question 66, 84\%

This is a step down transformer so the number of secondary turns are less than the number of turns in the primary.
Use $\frac{240}{24}=\frac{1000}{\mathrm{~N}}$

$$
\therefore \mathrm{N}=\frac{1000 \times 24}{240}
$$

$\therefore \mathrm{N}=100$ turns (ANS)

Example 671987 Question 67, 67\%

The peak current will be the RMS $\times \sqrt{2}$

$$
\begin{aligned}
& \therefore 10 \times \sqrt{2} \\
& \therefore \mathrm{I}_{\text {peak }}=14 \mathrm{~A}(\text { ANS })
\end{aligned}
$$

Example 681987 Question 68, 52\%

The power supplied, $(\mathrm{VI})_{\text {in }}$ is the same as the power out $(\mathrm{VI})_{\text {out }}$ (from the question, as we assume that there are no losses in the transformer)
Use $\mathrm{P}=\mathrm{VI}$

$$
\begin{aligned}
& \therefore \mathrm{P}_{\text {out }}=24 \times 10 \\
& \therefore \mathrm{P}_{\text {in }}=\mathbf{2 . 4} \mathbf{\times 1 0 ^ { 2 }} \mathbf{W} \text { (ANS) }
\end{aligned}
$$

Example 691987 Question 69, 41\%

Transformers require a changing flux (voltage) to operate. This can be either AC (most often) or a time varying DC voltage.
Since this is connected to a (constant) DC supply of 240 V , there will not be any current in the secondary coil
\therefore zero (ANS)

Question 701988 Question 56

Use $\mathrm{V}_{\text {peak }}=\mathrm{V}_{\text {RMS }} \times \sqrt{2}$
$\therefore \mathrm{V}_{\text {peak }}=1000 \times \sqrt{2}$
$\therefore \mathrm{V}_{\text {peak }}=1414$
$\therefore \mathrm{V}_{\text {peak }}=1400 \mathrm{~V}$ (ANS)
Question 711988 Question 57
Use: $\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$

$$
\begin{aligned}
& \frac{1000}{250}=\frac{2000}{N_{2}} \\
& \therefore N_{2}=500 \text { turns (ANS) }
\end{aligned}
$$

Question 721988 Question 58

The power supplied by the alternator $=200 \times 10^{3} \mathrm{~W}$.
Use $\mathrm{P}=\mathrm{VI}$, where I is the current in the transmission lines
$\therefore 200 \times 10^{3}=1000 \times 1$
$\therefore \mathrm{I}=-200 \mathrm{~A}$ (ANS)

Question 731988 Question 59

The power loss in the transmission cables is given by $P=i^{2} R$,
$\therefore \mathrm{P}=200^{2} \times 0.20$
$\therefore \mathrm{P}=8000$
$\therefore \mathrm{P}=8.0 \times 10^{3} \mathrm{~kW}$ (ANS)

Question 741988 Question 60

To deliver a fixed amount of power, a step up transformer is used at the alternator. This transformer increases the voltage, and decreases the current whilst delivering the same power. Since the power, $\mathrm{VI}_{\text {in }}=\mathrm{Vl}_{\text {out }}$ in an ideal transformer.
The power losses in transmission lines is given by $I^{2} R$.
So a decrease in I, results in an I^{2} reduction in the energy losses in the wires.
A step-down transformer is used at the other end of the transmission lines to bring the voltage down to a suitable level for the mill

Example 751993 Question 6

Using Kirchhoff's law, the current in must equal the current out.
The current out is 5 A in the Neutral +2 A in the earth $=7 \mathrm{~A}$.
Therefore the current in must be:
$\therefore 7 \mathrm{~A}$ (ANS)

