Solutions

Section A: Multiple-choice questions

Example 11983 Question 5, 66\%

Constant non-zero acceleration means that the velocity - time graph is an oblique straight line.
\therefore A and D (ANS)

Example 21978 Question 2, 81\%

At $\mathrm{t}=10 \mathrm{~s}$, the gradient (acceleration) decreases but the velocity continues to increase.
$\therefore B \quad$ (ANS)

Example 32002 Question 3, 70\%

Best graph is B because it matches the one I used in the previous question. Also it is the only one which has two fixed gradients, corresponding to the two sections of constant acceleration.

$\therefore B \quad$ (ANS)

Example 42002 Question 4, 45\%

Best graph is E because it needs to always increasing, since the car is moving over a distance of 400 m . Also it is the only one that is always curved, corresponding to the two sections of constant acceleration

```
\thereforeE (ANS)
```


Example 51967 Question 1, 54\%

The change in velocity is always given by
 final - initial
 $\therefore \mathbf{1 0} \mathbf{~ m} / \mathrm{sec}$ south $\mathbf{- 1 0} \mathbf{~ m} / \mathrm{sec}$ east.
 $\therefore 10 \mathrm{~m} / \mathrm{sec}$ south $+10 \mathrm{~m} / \mathrm{sec}$ west

$10 \mathrm{~m} / \mathrm{sec}$ west
$\therefore \mathrm{D} \quad$ (ANS)

Example 61980 Question 2, 81\%

Since both the stone and the marble will both have the same acceleration, the gradient of the graphs must be the same.
\therefore Either A, C, D, E
The marble starts after the stone, so it must be either C or E .
The marble starts at $\mathrm{v}=8.0 \mathrm{~ms}^{-1}$,
\therefore it must be graph C
(ANS)

Section B: Short-answer and extended-answer questions

Example 71998 Question 1, 74\%

To convert from $\mathrm{km} / \mathrm{hr}$ to m / s you need to divide by 3.6. (This should be on your cheat sheet)

$$
\therefore 190 \div 3.6=52.8 \mathrm{~m} / \mathrm{s}
$$

$\therefore 53 \mathrm{~m} / \mathrm{s} \quad$ (ANS)

Example 81998 Question 2, 70\%

In order to get full marks your graph had to show:

- that the terminal velocity was reached after 15 sec
- the velocity increased from 0 to $190 \mathrm{~km} / \mathrm{hr}$ in the first 15 secs
- that there was a smooth transition from acceleration to a terminal velocity where the acceleration was zero.

Examiner's comment

The 3 available marks were allocated as follows:

- 1 mark for the terminal velocity section after 15 s .
- 1 mark for a velocity increase from zero to $190 \mathrm{~km} \mathrm{~h}^{-1}$ between $0-15 \mathrm{~s}$.
- 1 mark for a graph that shows a smooth transition from increasing velocity to terminal velocity. The average mark for this question was $2.1 / 3$, with the main error being a failure to recognise the smooth transition, resulting in a graph as shown below. Such an answer scored only 2 marks.

Example 91983 Question 1, 71\%

The average speed is always given by $\frac{\text { distance travelled }}{\text { time taken }}$.
In this case it is $\frac{\text { area under the graph }}{\text { time taken }}=\frac{\frac{1}{2} \times 0.5 \times 2+2 \times 1.5+\frac{1}{2} \times 1 \times 2}{3}$
$=\frac{4.5}{3}$
$=1.5 \mathrm{~ms}^{-1} \quad$ (ANS)
Example 101983 Question 2, 64\%
The distance from the starting point is called the displacement. Therefore, this answer requires you to consider vectors, so the direction of travel is important. In the first 3 seconds the object travels 4.5 m in one direction. From $3.5(\mathrm{sec})$ to $9.0(\mathrm{sec})$ it travels $\frac{1}{2} \times 1.0 \times 1+1 \times 3.5+\frac{1}{2} \times 1 \times 1=4.5 \mathrm{~m}$ in the opposite direction.
\therefore after 9 (sec) the net displacement is zero.

Example 111983 Question 3, 71\%

The acceleration is given by the gradient of the velocity - time graph. In this case the gradient is positive, and its value is $\frac{1}{1}=1 . \quad \therefore+1 \mathrm{~ms}^{-2} \quad$ (ANS)

Example 1222000 Question 1, 75\%

The distance travelled was 400 m , and it took 16.0 seconds. The initial speed was $0 \mathrm{~m} / \mathrm{s}$. You need to find the acceleration.
This is given by substituting into the equation

$$
\begin{aligned}
& x=u t+1 / 2 a t^{2} \\
& 400=0 \times 16+1 / 2 \times a \times 16^{2} \\
& \therefore 400=128 \times a \\
& \therefore a=\frac{400}{128} \\
& \therefore a=3.125 \mathrm{~ms}^{-2}
\end{aligned}
$$

Example 1331980 Question 1, 93\%

The time it takes for the stone to reach the ground is given by $x=u t+1 / 2 a t^{2}$
In this case $u=0, a=10$ and $x=20$.
$\therefore 20=1 / 2 \times 10 \times \mathrm{t}^{2}$
$\therefore 20=5 \times \mathrm{t}^{2}$
$\therefore 4=\mathrm{t}^{2}$
$\therefore \mathrm{t}=2$.
\therefore The stone take $\mathbf{2}$ secs to reach the ground

Example 1441980 Question 3, 11\%

For the marble to pass the stone, it must catch up with the stone. You need to equate two equations of motion and solve for time (t).
If you let the marble start at time $t=0$, then the time for the stone needs to be $t-0.6$. This is because it will have travelled for less time than the marble.

Stone
$x=u t+1 / 2 a t^{2}$
becomes $x=0 \times t+1 / 2 \times 10 \times t^{2}$
$\therefore \mathrm{x}=5 \mathrm{t}^{2}$
Marble
$x=u t+1 / 2 a t^{2}$
becomes $x=8 \times(t-0.6)+1 / 2 \times 10 \times(t-0.6)^{2}$
$\therefore \mathrm{x}=8(\mathrm{t}-0.6)+5(\mathrm{t}-0.6)^{2}$
For the marble to pass the stone both equations must be equal.
$\therefore 5 t^{2}=8(t-0.6)+5(t-0.6)^{2}$
$\therefore 5 t^{2}=8 t-4.8+5\left(t^{2}-1.2 t+0.36\right)$
$\therefore 5 t^{2}=8 t-4.8+5 t^{2}-6 t+1.8$
$\therefore 0=2 \mathrm{t}-3$
$\therefore 2 t=3$
$\therefore \mathrm{t}=1.5 \mathrm{secs}(\mathrm{ANS})$

Example 1551978 Question 1, 63\%

The average acceleration is given by $\frac{\text { change in velocity }}{\text { time taken }}=\frac{100 / 3.6}{15}$

$$
=1.85 \mathrm{~m} \mathrm{~s}^{-2} \quad \text { (ANS) }
$$

Example 1661978 Question 3, 44\%

The distance travelled by the two vehicles needs to be the same.
Acceleration of the motorcycle during first 10 seconds $a=\frac{80 / 3.6}{10}=2.22 \mathrm{~m} \mathrm{~s}^{-2}$
For the motorcycle the distance travelled in the first 10 seconds
$d=\frac{a t^{2}}{2}=\frac{2.22 \times 100}{2}=111 \mathrm{~m}$
In the next 5 seconds $a=\frac{\frac{100}{3.6}-80 / 3.6}{5}=1.11 \mathrm{~m} \mathrm{~s}^{-2} d=u t+\frac{a t^{2}}{2}=\frac{80}{3.6} \times 5+\frac{1.11 \times 5^{2}}{2}=125 \mathrm{~m}$
Total distance $=236 \mathrm{~m}$.
During the first 15 secs, the car travels
$80 / 3.6 \times 15=333.3 \mathrm{~m}$.
So at time $\mathrm{t}=15$, the car is 97.3 m in front of the motorcycle.
After that equation of the motion of the car $x=97.3+22.2 t$
Equation of the motion of the motorcycle $x=27.8 t$
Equate their positions $97.3+22.2 t=27.8 t t=17.4 \mathrm{~s}$
Total time $=15+17.4=32.4$ seconds (ANS)

Example 1772001 Question 12, 80\%

To convert from $\mathrm{km} / \mathrm{hr}$ to m / s you need to divide by 3.6. (This should be on your cheat sheet)
$\therefore 100 \mathrm{~km} / \mathrm{hr}=27.8 \mathrm{~m} / \mathrm{s}$.
$\therefore \Delta \mathrm{v}=27.8 \mathrm{~m} / \mathrm{s}$.
acc $=\frac{\Delta v}{\Delta \mathrm{t}}=\frac{27.8}{5.9}$

$$
=4.71 \mathrm{~ms}^{-2} \quad \text { (ANS) }
$$

Example 182001 Question 13, 70\%

Distance travelled \rightarrow

$$
\begin{aligned}
& \mathrm{x}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \\
& \therefore \mathrm{x}=0+\frac{1}{2} \times 4.71 \times 5.9^{2} \\
&=81.9 \mathrm{~m} \\
&=82 \mathrm{~m}
\end{aligned}
$$

Example 192002 Question 1, 76\%

Distance travelled

$$
x=u t+\frac{1}{2} a t^{2}
$$

Given $u=0, x=400$ and $t=19$

$$
\begin{align*}
\therefore \mathrm{a} & =\frac{2 \mathrm{x}}{\mathrm{t}^{2}} \\
& =\frac{800}{361} \\
& =2.22 \mathrm{~ms}^{-2} \tag{ANS}
\end{align*}
$$

Example 202002 Question 2, 40\%

Average speed = total distance/total time. Use a velocity-time graph sketch

Left hand triangle has an area of 400 [displacement]
Right hand triangle has same height, but base of 5.1 instead of 19 [stopped in 5.1, accelerated for 19]
Thus area is $(400 \times 5.1) / 19$
Total area $=$ total distance

$$
=(24.1 \times 400) / 19
$$

Average speed $=$ distance $/$ time
$=[(24.1 \times 400) / 19] / 24.1$
= 400/19
$=21.1 \mathrm{~ms}^{-1}$ (ANS)

Example 21

2004 Question 2, 62\%
$108 \mathrm{~km} / \mathrm{h}=30 \mathrm{~m} / \mathrm{s} \quad 72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}$
$v^{2}=u^{2}+2$ as $30^{2}=20^{2}+2 \times 1.2 s$
$\mathbf{s}=208.3 \mathrm{~m}$ (ANS)

Example 22

2003 Question 1, 63\%
The distance is the area under the graph over the first 4.0 seconds of the motion.
First second - area of the triangle $\frac{1}{2} \times 1 \times 20=10 \mathrm{~m}$
Next 3 seconds - area of the trapezium $\frac{20+50}{2} \times 3=105 \mathrm{~m}$
Total 115 m (ANS)

Example 23

2003 Question 2, 62\%
The acceleration is the gradient of the speed-time graph at $t=3.0 \mathrm{~s}$.
$a=\frac{50-20}{3}$
$\mathrm{a}=10 \mathrm{~ms}^{-2}$
(ANS)

Example 24

2003 Question 3, 48\%
The average speed is the total distance divided by the time. The total distance involved calculating the total area under the graph for the 12 seconds of the motion.
From 4 to 9 seconds $\frac{50+70}{2} \times 5=300 \mathrm{~m}$
Last 3 seconds $70 \times 3=210 \mathrm{~m}$
Total distance 615 m .
$v=\frac{615}{12}=52.1 \boldsymbol{m ~ s}^{-1} \quad$ (ANS)
Example 25
2003 Question 4, 53\%
Time taken by car B $s=\frac{u+v}{2} t \quad 400=\frac{80 / 3.6}{2} t \quad t=36 s$
Distance travelled by car A $s=\frac{80}{3.6} \times 36=\mathbf{8 0 0} \boldsymbol{m}$ (ANS)
Example 26
2003 Question 5, 80\%
Answer: C

