Universal law of gravity worksheet solutions.

For the questions in this worksheet take: g (on the Earth's surface] = 9.8 m s⁻² G(the Universal Constant of Gravitation) = 6.67 x 10⁻¹¹ N m² kg⁻² M_E (the mass of the Earth) = 6.0 x 10²⁴ kg M_M (the mass of the Moon) = 7.34 x 10²² kg R_M (the radius of the Moon's orbit around the Earth) = 3.84 x 10⁸ m R_E (the radius of the Earth) = 6.38 x 10⁶ m r_M (the radius of the Moon) = 1.74 x 10⁶ m 7 M_S (the mass of the Sun) = 2.0 x 10³⁰. kg R_{SE} (the radius of the Earth's orbit around the Sun) = 1.5 x 10¹¹ m

1. What is the gravitational force of attraction between: **a** two oranges of mass 0.12 kg placed 0.20 m apart on a table?

$$F_{g} = \frac{Gm_{1}m_{2}}{r^{2}}$$
$$= \frac{(6.67 \times 10^{-11})(0.12 \text{ kg})(0.12 \text{ kg})}{(0.20 \text{ m})^{2}}$$
$$= 2.4 \times 10^{-11} \text{ N}$$

b the Earth and the Sun?

$$F_{g} = \frac{Gm_{1}m_{2}}{r^{2}}$$
$$= \frac{(6.67 \times 10^{-11})(6.0 \times 10^{24} \text{ kg})(2.0 \times 10^{30} \text{ kg})}{(1.5 \times 10^{11} \text{ m})^{2}}$$
$$= 3.6 \times 10^{22} \text{ N}$$

2. How far apart would you theoretically need to place two masses each of $4.0 \ge 10^5$ kg, in order for the force between them to be 0.10 N?

$$F_{g} = \frac{Gm_{1}m_{2}}{r^{2}}$$

0.10 N = $\frac{(6.67 \times 10^{-11})(4.0 \times 10^{5} \text{ kg})^{2}}{r^{2}}$
 $r = \sqrt{\frac{(6.67 \times 10^{-11})(4.0 \times 10^{5} \text{ kg})^{2}}{0.10 \text{ N}}}$
= 10.3 m

3. The magnitude of the gravitational force of attraction between two objects is F when they are placed a distance r apart. What is the magnitude of the gravitational force of attraction between the two masses if:

a the mass of one object is halved?

$$\frac{Gm_1(m_2/2)}{r^2} = \frac{1}{2} \frac{Gm_1m_2}{r^2} = \frac{F}{2}$$

b the mass of both objects is halved?

$$\frac{G(m_1/2)(m_2/2)}{r^2} = \frac{1}{4} \frac{Gm_1m_2}{r^2} = \frac{F}{4}$$

c the distance between the centres of the two masses is halved?

$$\frac{Gm_1m_2}{(r/2)^2} = 4\frac{Gm_1m_2}{r^2} = 4F$$

d the distance between the two masses is increased by a factor of three?

 $\frac{Gm_1m_2}{(3r)^2} = \frac{1}{9}\frac{Gm_1m_2}{r^2} = \frac{F}{9}$

4. What is the gravitational force of attraction between the Earth and the Moon? $_{E} = \frac{Gm_{e}m_{m}}{2}$

$$= \frac{(6.67 \times 10^{-11})(6.0 \times 10^{24} \text{ kg})(7.34 \times 10^{22} \text{ kg})}{(3.84 \times 10^8 \text{ m})^2}$$
$$= 2.0 \times 10^{20} \text{ N}$$

5. a What is the weight of a 1.0 kg mass on the surface of the Earth? 9.8 N

b How far from the centre of the Earth is the mass when its weight is 5.0 N? $F_{\rm g} = \frac{Gm_{\rm e}m_{\rm m}}{2}$

$$= \frac{(6.67 \times 10^{-11})(6.0 \times 10^{24} \text{ kg})(1.0 \text{ kg})}{r^2}$$

= 5.0 N
$$r = \sqrt{\frac{(6.67 \times 10^{-11})(6.0 \times 10^{24} \text{ kg})(1.0 \text{ kg})}{(5.0 \text{ N})}}$$

= 9.0×10⁶ m

6. What is the gravitational field strength at a point whose distance from the Earth's surface is equal to the radius of the Earth?

$$F_{\rm g} = \frac{Gm_{\rm e}m_{\rm m}}{(2r_{\rm e})^2} = \frac{1}{4} \frac{Gm_{\rm e}m_{\rm m}}{r_{\rm e}^2} = \frac{10\,{\rm N\,kg^{-1}}}{4}$$
$$= 2.5\,{\rm N\,kg^{-1}}$$

7. What is the gravitational field strength on the surface of the Moon due to the Moon?

$$F_{g} = \frac{Gm_{m}m}{r_{m}^{2}} = mg_{m}$$

$$g_{m} = \frac{Gm_{m}}{r_{m}^{2}}$$

$$= \frac{(6.67 \times 10^{-11})(7.34 \times 10^{22} \text{ kg})}{(1.74 \times 10^{6} \text{ m})^{2}}$$

$$= 1.6 \text{ N kg}^{-1}$$

8. At what distance from the Earth would a spacecraft experience zero net gravitational force due to the opposing pulls of the Earth and the Moon? Distance from Earth to Moon is $r_{\rm EM}$

Let distance from Earth to Spacecraft be r_{ES} , therefore distance from Moon to Spacecraft r_{MS}, is r_{EM}- r_{ES}

When spacecraft experiences zero net force,

$$F_{\rm ES} = F_{\rm MS}$$

$$\frac{Gm_{\rm Earth} m_{\rm spacecraft}}{r_{\rm ES}^2} = \frac{Gm_{\rm Moon} m_{\rm spacecraft}}{r_{\rm MS}^2}$$

$$\frac{Gm_{\rm Earth} m_{\rm spacecraft}}{r_{\rm ES}^2} = \frac{Gm_{\rm Moon} m_{\rm spacecraft}}{(r_{\rm EM} - r_{\rm ES})^2}$$

$$\frac{m_{\rm Earth}}{r_{\rm ES}^2} = \frac{m_{\rm Moon}}{(r_{\rm EM} - r_{\rm ES})^2}$$

$$\frac{r_{\rm ES}^2}{(r_{\rm ES} - r_{\rm ES})^2} = \frac{m_{\rm Earth}}{m_{\rm Moon}} = \frac{6.0 \times 10^{24}}{7.34 \times 10^{22}}$$

$$\frac{r_{\rm ES}}{(r_{\rm ES} - r_{\rm ES})^2} = \sqrt{81.7} = 9.04$$

$$r_{\rm ES} = 9.04(r_{\rm EM} - r_{\rm ES})$$

$$10.04r_{\rm ES} = 9.04r_{\rm EM}$$

$$r_{\rm ES} = \frac{9.04r_{\rm EM}}{10.04} = \frac{9.04 \times 3.84 \times 10^8}{10.04} \text{ m}$$