Types of Electromagnetic Radiation

	Wavelength	Frequency	
Region	range (approx.)	range (approx.)	Comments
Long-wave radio	>10 m	<3x10 ⁷ hz	Includes traditional AM radio region. These frequencies can travel long distances by multiple reflections between the surface of the earth and its ionosphere.
Short-wave radio	10 cm - 10 m	3x10 ⁷ - 3x10 ⁹	Used for TV, FM, and other communication purposes. Generally travels only relatively short distances because the ionosphere is transparent to it.
Microwave	1 mm - 10 cm	$3x10^9 - 3x10^{11}$	Present limit of radio technology for most purposes.
Far infrared	30 mm - 1 mm	$3x10^{11} - 10^{13}$	3 K radiation fills universe.
Thermal infrared	3 mm - 30 mm	10 ¹³ - 10 ¹⁴	Thermal emission of earth and planets.
Near infrared	700 nm - 3mm	10^{14} - $4x10^{14}$	Solar and stellar emission.
Visible	400 nm -700nm (1.7 - 3 eV)	4x10 ¹⁴ -7x10 ¹⁴	Peak of solar radiation. Visible to human eye, standard photographic film and CCD video detectors.
Ultraviolet	200 nm -400nm (3 - 6 eV)	7x10 ^{14 -} 1.5x10 ¹⁵	Divided at 300 nm by atmospheric (ozone) cutoff. Appreciable solar flux causes sunburn.
Vacuum UV (EUV)	10 nm - 200 nm (6 - 120 eV)	1.5x10 ¹⁵⁻ 3x10 ¹⁶	Very strong absorption in matter, hence very difficult to observe.
X-rays	120 eV-100keV	3x10 ¹⁶ -3x10 ¹⁹	Produced by electron beams in X-ray tubes, and by inner atomic transitions. Progressively more penetrating as E increases, up to many centimeters in water.
γ-rays	100 keV	3x10 ¹⁹	Produced by nuclear and other high energy processes. Can penetrate up to meters in water.