Name: \qquad
\qquad

Series circuits have all only one path for the electricity to flow.

Two lightbulbs in series. Each light is dependent on the other.

Types of Circuits

If any part of a series circuit is broken, the circuit fails. If either light is unscrewed both lights will turn off.

> Your house is wired in parallel, so that each light and appliance can be turned on and off independently.

Parallel circuits have multiple paths for the electricity to flow.

The branches (paths) of a parallel circuit are independent. If either light is unscrewed, the other will remain on.

Two lightbulbs in parallel. Each light is independent of each other.

> Abbreviations:
> A-Amps - current
> v - volts - voltage
> Ω-ohms - resistance
> Increasing voltage
> increases current.
> Increasing resistance
> decreases current.
> Decreasing voltage
> decreases current.
> Decreasing resistance increases current.

Ex. How much current does a 12 v battery push through a 3Ω resistor?	
$\mathrm{V}=12 \mathrm{v}$ $\mathrm{R}=3 \Omega$ $\mathrm{I}=?$	$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12 \mathrm{v}}{3 \Omega}=4 \mathrm{~A}$

Ex. How strong a battery produces 2 A through a 3Ω resistor?		
$\begin{aligned} & \mathrm{V}=? \mathrm{~V} \\ & \mathrm{R}=3 \Omega \\ & \mathrm{I}=2 \mathrm{~A} \end{aligned}$	$I=\frac{V}{R}$	$\begin{gathered} \text { So, } \mathrm{V}=\mathrm{IR} \\ =(2 \mathrm{~A})(3 \Omega) \\ 6 \mathrm{~V} \end{gathered}$

Current is moving electrons, moving charge.

Increasing current causes more electricity to move through a device.

Increasing electricity through a device causes it to work faster (in a motor) or be brighter (in a lightbulb).

Voltage is electrical potential: how much work a battery can do.

Voltage is linked to energy: 1 volt of voltage = 1 joule of energy per coulomb of charge
To increase voltage you could use a stronger battery OR add batteries.
 3 volts total

More voltage is like a stronger pump, giving more force and more current.

0 volts total

The lightbulb doesn't light here, because the two batteries are pushing opposite directions. To add together, batteries must be facing the same direction.
$\mathrm{I}=\mathrm{V} / \mathrm{R}$

$$
=6 \mathrm{v} / 3 \Omega=2 \mathrm{~A}
$$ The light is bright because the 6 volts only have one light to run.

$\mathrm{I}=\mathrm{V} / \mathrm{R}$ $=6 \mathrm{v} / 6 \Omega=1 \mathrm{~A}$ Both lights are dimmer because the 6 volts have two lights to run.

More resistance $=$ less current
Less current $=$ less light

Name: \qquad
Period: \qquad

1. $\mathrm{I}=$ \qquad 4 newtons 2. $\mathrm{V}=$ \qquad 4 amps 3. $\mathrm{R}=$ \qquad 4 joules 4. $\mathrm{E}=$ \qquad 4 watts 5. $\mathrm{P}=$ \qquad 4 ohms (Ω) $6 . \mathrm{F}=$ \qquad 4 volts	Label the diagrams as parallel or series circuits. A. \qquad B. \qquad
The units for current is \qquad ; the abbreviation is \qquad The units of voltage is \qquad ; the abbreviation is \qquad The units of resistance is \qquad ; the abbreviation is \qquad	Series or Parallel Circuits?
	Only one path for the electricity. Can turn off one light without others turning off. Dependent paths. If you turn off one light,
If you increase voltage, the current will increases or decreases? If you decrease resistance, the current will increase or decrease? If the current increases, the resistance increased or decreased? If voltage is decreased, the current will increase or decrease? If the current decreases, the voltage increased or decreased? If there is more current will a light bulb be brighter or dimmer?	\qquad How your house is wired. \qquad Independent current paths. \qquad More than one path for the electricity to flow.
	How much current goes through a circuit with a 12 v battery and a 3Ω resistor? Find the current in circuit with 6 v battery and 2 resistor:
Will the lights turn on or not? And why?	How much voltage gives 5 amps of current through a 3Ω light bulb?

In the Lab

Circuit 1: battery; light bulb; switch. Draw diagram:
Circuit 3: 2 batteries; light bulb; switch. Draw diagram:

What happens if you unscrew the light bulb?
How does the light's brightness compare to circuit 1 and why?

Circuit 2: battery; 2 light bulbs; switch. Draw diagram:
Circuit 4: 2 batteries; 2 light bulbs; switch. Draw diagram:

How does the light's brightness compare to circuit 1 and why?

What happens if you unscrew a light bulb?
Is this a series or parallel circuit?

