Resistance in Series and Parallel Worksheet

$$
\begin{aligned}
& \text { Resistors in parallel } \\
& \frac{1}{\mathrm{R}_{\text {equivalent }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}=
\end{aligned}
$$

1. Find the equivalent resistance of these series circuits (in Ω) :

$\text { a) } \begin{aligned} & \mathrm{R}_{1}=100 \Omega \\ & \mathrm{R}_{2}=20 \Omega \\ & \mathrm{R}_{3}=55 \Omega \end{aligned}$	$\text { b) } \begin{aligned} \mathrm{R}_{1} & =7500 \Omega \\ \mathrm{R}_{2} & =1.5 \mathrm{k} \Omega \\ \mathrm{R}_{3} & =25 \Omega \end{aligned}$	c) $\begin{aligned} & \mathrm{R}_{1}=0.1 \Omega \\ & \mathrm{R}_{2}=0.2 \Omega \\ & \mathrm{R}_{3}=50 \mathrm{~m} \Omega \end{aligned}$

2. Find the equivalent resistance of these parallel circuits (in Ω) :
a) $R_{1}=100 \Omega$
$R_{2}=20 \Omega$
$\mathrm{R}_{3}=55 \Omega$
b) $\mathrm{R}_{1}=7500 \Omega$
$R_{2}=1.5 \mathrm{k} \Omega$
$R_{3}=25 \Omega$
c) $R_{1}=0.1 \Omega$
$R_{2}=0.2 \Omega$
$R_{3}=50 \mathrm{~m} \Omega$
3. The same two equations above work for any number of resistors in a circuit. If a fourth resistor is added $\left(R_{4}=85 \Omega\right)$, find the equivalent resistance in $\left.1 a\right)$ and $\left.2 a\right)$.

1a)	2a)

4. Calculate the equivalent resistance of the following circuits:
a) $R_{1}=5 \Omega R_{2}=10 \Omega$

b) $R_{1}=R_{2}=R_{3}=1.5 \Omega$

c) $R_{1}=12 \Omega R_{2}=5 \Omega R_{3}=8 \Omega$

R_{1}
d) $R_{1}=1 \Omega \quad R_{2}=2 \Omega \quad R_{3}=3 \Omega \quad R_{4}=4 \Omega$

5. Three light bulbs of 4Ω resistance each are in a parallel with a 9 V power supply. Draw the circuit, and find the current.
6. Three identical buzzers are in parallel with a 110 V power supply. The circuit has a current of 1.5 A. Draw the circuit. Find the resistance of one buzzer.
