Resistance in Series and Parallel Worksheet

1. Find the equivalent resistance of these series circuits (in Ω) :

2. Find the equivalent resistance of these <u>parallel</u> circuits (in Ω) :

a) $R_1 = 100 \Omega$ $R_2 = 20 \Omega$ $R_3 = 55 \Omega$	 b) R₁ = 7500 Ω R₂ = 1.5 kΩ R₃ = 25 Ω 	c) $R_1 = 0.1 \Omega$ $R_2 = 0.2 \Omega$ $R_3 = 50 m\Omega$	

3. The same two equations above work for any number of resistors in a circuit. If a fourth resistor is added ($R_4 = 85 \Omega$), find the equivalent resistance in 1a) and 2a).

1a)	2a)

4. Calculate the equivalent resistance of the following circuits:

c) $R_1 = 12 \Omega R_2 = 5 \Omega R_3 = 8 \Omega$

d) $R_1 = 1 \Omega$ $R_2 = 2 \Omega$ $R_3 = 3 \Omega$ $R_4 = 4 \Omega$

5. Three light bulbs of 4 Ω resistance each are in a parallel with a 9V power supply. Draw the circuit, and find the current.

6. Three identical buzzers are in parallel with a 110 V power supply. The circuit has a current of 1.5 A. Draw the circuit. Find the resistance of one buzzer.