Question 10 (2 marks) The length of a spaceship is managed to be over	
The length of a engagehin is managed to be asset	
The length of a spaceship is measured to be exa	actly one-third of its rest length as it passes by an observing s
What is the speed of this spaceship, as determine	ned by the observing station, expressed as a multiple of c ?
	*
c	
1	

Tes tray To a acce	estion 11 (7 marks) at sof relativistic time dilation have been made by observing the decay of short-lived particles. A muon, relling from the edge of the atmosphere to the surface of Earth, is an example of such a particle, model this in the laboratory, another elementary particle with a shorter half-life is produced in a particle elerator. It is travelling at $0.99875c$ ($\gamma = 20$). Scientists observe that this particle travels 9.14×10^{-5} m straight line from the point where it is made to the point where it decays into other particles. It is not elerating.	
a.	Calculate the lifetime of the particle in the scientists' frame of reference.	2 marks
	S	
b.	Calculate the distance that the particle travels in the laboratory, as measured in the particle's frame of	
<i>y</i> ,	reference.	2 marks
	m	
c.	Explain why the scientists would observe more particles at the end of the laboratory measuring range	
	than classical physics would expect.	3 marks

Question 14 (3	marks)	
----------------	--------	--

An Earth-like planet has been discovered orbiting a distant star. A hypothetical mission to this planet is suggested. The planet is 1.0×10^{18} m from Earth. The spaceship suggested for the mission can travel at an average speed of 0.99c. Take $\gamma = 7.1$ for this speed.

Scientists are concerned about the length of time the passengers would have to spend on the spaceship to travel to this planet.

	lativity to estimate this time, in years, as measured on the spaceship.
years	
uestion 15 (2 marks) in unstable subatomic parti- tie rest mass of this π_0 mes	icle, known as a π_0 meson, decays completely into electromagnetic radiation, son is 2.5×10^{-28} kg.
	e released by this π_0 meson if it decays at rest?

Question 14	(2 marks)
	onary in a spaceship travelling at constant speed.
	ean that the spaceship must be in an inertial frame of reference? Justify your answer.
- 000 tino in	that the spaceship must be in an inertial famile of reference; Justify your answer.
Question 15	(3 marks)
She notes th	scientist in an inertial frame of reference observes a spaceship moving past her at a constant velocity, at the clocks on the spaceship, which are operating normally, run eight times slower than her clocks, so operating normally. The spaceship has a mass of 10 000 kg.
Calculate the	e kinetic energy of the spaceship in the scientist's frame of reference. Show your working,
· · · · · · · · · · · · · · · · · · ·	
	J
Question 16	
Quasars are	among the most distant and brightest objects in the universe. One quasar (3C446) has a brightness that dly with time.
	userve the quasar's brightness over a 20-hour time interval in Earth's frame of reference. The quasar is
noving awa	y from Earth at a speed of $0.704c$ ($\gamma = 1.41$).
Calculate the	e time interval that would be observed in the quasar's frame of reference. Show your working.
	The second of th

Question 16

In a particle accelerator, magnesium ions are accelerated to 20.0% of the speed of light.

Which one of the following is closest to the Lorentz factor, γ , for the magnesium ions at this speed?

- **A.** 1.02
- **B.** 1.12
- C. 1.20
- **D.** 2.24

Question 17

The lifetime of stationary muons is measured in a laboratory to be 2.2 μ s. The lifetime of relativistic muons produced in Earth's upper atmosphere, as measured by ground-based scientists, is 16 μ s.

The resulting time dilation observed by the scientists gives a Lorentz factor, γ , of

- **A.** 0.14
- **B.** 1.4
- C. 3.5
- **D.** 7.3

Question 18

If a particle's kinetic energy is 10 times its rest energy, $E_{\rm rest}$, then the Lorentz factor, γ , would be closest to

- A. 9
- **B.** 10
- **C.** 11
- **D.** 12

Question	17 (3 mar	kel
Oucsuon	14 t	Juan	וכת

A spaceship is travelling from Earth to the star system Epsilon Eridani, which is located 10.5 light-years from Earth as measured by Earth-based instruments.

If the spaceship travels at $0.85c$ ($\gamma = 1.90$) on the spaceship travelling to Epsilon Eric), determine the durat	ion of the flight as mea	sured by the astronauts
		7 car to be 9.40 ^ 10 m	·
<u> </u>			
years			

Question 18 (3 marks)

Alien astronauts are travelling between star systems aboard a cube-shaped spaceship, as shown in Figure 16. The sides of the cube along the x-axis, y-axis and z-axis measure 3.20×10^3 m in the spaceship's frame of reference.

The spaceship passes Bob, who is on a space station, at speed v = 0.990c (y = 7.09).

Figure 16

In the table below, determine the dimensions of the cube-shaped spaceship as measured from Bob's frame of reference and explain your reasoning.

length of side along x-axis	m
length of side along <i>y</i> -axis	m
length of side along z-axis	m

Reasoning	 	
	•	
,	 	

2019	PHYSICS	EXAM:	MHT

36

Question 19 (2 marks)				
In a nuclear fusion reaction	n in the sun's core two	deuterium nuclei	each with a mass	. of 3

n reaction in the sun's core, two deuterium nuclei, each with a mass of 3.3436×10^{-27} kg, no helium-4 nucleus with a mass of 6.6465×10^{-27} kg.

Ignore the kinetic energy of the nucle		10 ⁻²⁷ kg.	
Calculate the energy released. Show	w your working.		
			 <u> </u>

Question 11 (3 marks) What is the second postulate of Einstein's theory of special relativity regarding the speed of light? Explain how the second postulate differs from the concept of the speed of light in classical physics.						

28

Question 12

A high-energy proton is travelling through space at a constant velocity of 2.50×10^8 m s⁻¹.

The Lorentz factor, γ , for this proton would be closest to

- **A.** 1.81
- **B.** 2.44
- **C.** 3.27
- **D.** 3.39

Question 13

Matter is converted to energy by nuclear fusion in stars.

If the star Alpha Centauri converts mass to energy at the rate of $6.6 \times 10^9 \ kg \ s^{-1}$, then the power generated is closest to

- **A.** $2.0 \times 10^{18} \,\mathrm{W}$
- **B.** $2.0 \times 10^{18} \,\mathrm{J}$
- **C.** $6.0 \times 10^{26} \text{ W}$
- **D.** $6.0 \times 10^{26} \,\mathrm{J}$

2020	PHYSICS F	CVANA

An	estion 11 (4 marks) astronaut has left Earth and is travelling on a spaceship at $0.800c$ ($\gamma = 1.67$) directly towards the star wn as Sirius, which is located 8.61 light-years away from Earth, as measured by observers on Earth.	
a.	How long will the trip take according to a clock that the astronaut is carrying on his spaceship? Show your working.	2 marks
		-
	years	
b.	Is the trip time measured by the astronaut in part a. a proper time? Explain your reasoning.	2 marks
		-

28

Question 13

Joanna is an observer in Spaceship P and is watching Spaceship Q fly past at a relative speed of 0.943c ($\gamma = 3.00$). She observes a stationary clock measuring a time interval of 75.0 s between two events in Spaceship Q. This is a proper time interval.

Which one of the following is closest to the time interval observed between the two events in Spaceship P's frame of reference?

- **A.** 15.0 s
- **B.** 25.0 s
- **C.** 125 s
- **D.** 225 s

Ones	tion	10	(4	marks)
Oucs	uvu	$1\mathbf{V}$	17	marks

Jacinta is standing still while observing a spaceship passing Earth at a speed of 0.984c.

Calculate γ for this speed, correct to three significant figures. Show your working.	2 ma
The spaceship is travelling to the Alpha Centauri star system in a straight line at this Jacinta's frame of reference, this distance is measured to be 4.37 light-years (that is, take light 4.37 years to travel this distance).	
Calculate the time that would be measured by Jacinta for the spaceship's journey, cothree significant figures. Show your working.	orrect to 2 ma