Question 10 (2 marks)
The length of a spaceship is measured to be exactly one-third of its rest length as it passes by an observing station.
What is the speed of this spaceship, as determined by the observing station, expressed as a multiple of c ?
\qquad
\qquad
\qquad
\qquad
\square

Question 11 (7 marks)

Tests of relativistic time dilation have been made by observing the decay of short-lived particles. A muon, travelling from the edge of the atmosphere to the surface of Earth, is an example of such a particle.
To model this in the laboratory, another elementary particle with a shorter half-life is produced in a particle accelerator. It is travelling at $0.99875 c(y=20)$. Scientists observe that this particle travels $9.14 \times 10^{-5} \mathrm{~m}$ in a straight line from the point where it is made to the point where it decays into other particles. It is not accelerating.
a. Calculate the lifetime of the particle in the scientists' frame of reference.
\qquad
\qquad
\qquad
\square
b. Calculate the distance that the particle travels in the laboratory, as measured in the particle's frame of reference.
\qquad
\qquad
\qquad
\qquad

c. Explain why the scientists would observe more particles at the end of the laboratory measuring range than classical physics would expect.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 14 (3 marks)
An Earth-like planet has been discovered orbiting a distant star. A hypothetical mission to this planet is suggested. The planet is $1.0 \times 10^{18} \mathrm{~m}$ from Earth. The spaceship suggested for the mission can travel at an average speed of $0.99 c$. Take $\gamma=7.1$ for this speed.
Scientists are concerned about the length of time the passengers would have to spend on the spaceship to travel to this planet.

Use principles of special relativity to estimate this time, in years, as measured on the spaceship.
\qquad
\qquad
\qquad
\qquad
\qquad
\square

Question 15 (2 marks)

An unstable subatomic particle, known as a π_{0} meson, decays completely into electromagnetic radiation. The rest mass of this π_{0} meson is $2.5 \times 10^{-28} \mathrm{~kg}$.
How much energy would be released by this π_{0} meson if it decays at rest?
\qquad
\qquad
\qquad
\qquad

Question 14 (2 marks)
Jani is stationary in a spaceship travelling at constant speed.
Does this mean that the spaceship must be in an inertial frame of reference? Justify your answer.
\qquad
\qquad
\qquad

Question 15 (3 marks)
A stationary scientist in an inertial frame of reference observes a spaceship moving past her at a constant velocity. She notes that the clocks on the spaceship, which are operating normally, run eight times slower than her clocks, which are also operating normally. The spaceship has a mass of 10000 kg .

Calculate the kinetic energy of the spaceship in the scientist's frame of reference. Show your working.
\qquad
\qquad
\qquad
\square

Question 16 (2 marks)
Quasars are among the most distant and brightest objects in the universe. One quasar (3C446) has a brightness that changes rapidly with time.
Scientists observe the quasar's brightness over a 20-hour time interval in Earth's frame of reference. The quasar is moving away from Earth at a speed of $0.704 c(y=1.41)$.

Calculate the time interval that would be observed in the quasar's frame of reference. Show your working.
\square
h

Question 16

In a particle accelerator, magnesium ions are accelerated to 20.0% of the speed of light.
Which one of the following is closest to the Lorentz factor, γ, for the magnesium ions at this speed?
A. $\quad 1.02$
B. 1.12
C. 1.20
D. 2.24

Question 17

The lifetime of stationary muons is measured in a laboratory to be $2.2 \mu \mathrm{~s}$. The lifetime of relativistic muons produced in Earth's upper atmosphere, as measured by ground-based scientists, is $16 \mu \mathrm{~s}$.
The resulting time dilation observed by the scientists gives a Lorentz factor, γ, of
A. 0.14
B. 1.4
C. 3.5
D. 7.3

Question 18

If a particle's kinetic energy is 10 times its rest energy, $E_{\text {rest }}$, then the Lorentz factor, γ, would be closest to
A. 9
B. 10
C. 11
D. 12

Question 17 (3 marks)
A spaceship is travelling from Earth to the star system Epsilon Eridani, which is located 10.5 light-years from Earth as measured by Earth-based instruments.

If the spaceship travels at $0.85 c(\gamma=1.90)$, determine the duration of the flight as measured by the astronauts on the spaceship travelling to Epsilon Eridani. Take one light-year to be $9.46 \times 10^{15} \mathrm{~m}$. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

Question 18 (3 marks)
Alien astronauts are travelling between star systems aboard a cube-shaped spaceship, as shown in Figure 16. The sides of the cube along the x-axis, y-axis and z-axis measure $3.20 \times 10^{3} \mathrm{~m}$ in the spaceship's frame of reference.
The spaceship passes Bob, who is on a space station, at speed $v=0.990 c(\gamma=7.09)$.

Figure 16
In the table below, determine the dimensions of the cube-shaped spaceship as measured from Bob's frame of reference and explain your reasoning.

length of side along x-axis	m
length of side along y-axis	m
length of side along z-axis	m

Reasoning \qquad
\qquad
\qquad

Question 19 (2 marks)
In a nuclear fusion reaction in the sun's core, two deuterium nuclei, each with a mass of $3.3436 \times 10^{-27} \mathrm{~kg}$, fuse to produce one helium-4 nucleus with a mass of $6.6465 \times 10^{-27} \mathrm{~kg}$.
Ignore the kinetic energy of the nuclei before the reaction.
Calculate the energy released. Show your working.
\square

Question 11 (3 marks)
What is the second postulate of Einstein's theory of special relativity regarding the speed of light? Explain how the second postulate differs from the concept of the speed of light in classical physics.
\qquad
\qquad
\qquad

Question 12

A high-energy proton is travelling through space at a constant velocity of $2.50 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
The Lorentz factor, γ, for this proton would be closest to
A. $\quad 1.81$
B. 2.44
C. 3.27
D. 3.39

Question 13

Matter is converted to energy by nuclear fusion in stars.
If the star Alpha Centauri converts mass to energy at the rate of $6.6 \times 10^{9} \mathrm{~kg} \mathrm{~s}^{-1}$, then the power generated is closest to
A. $2.0 \times 10^{18} \mathrm{~W}$
B. $2.0 \times 10^{18} \mathrm{~J}$
C. $\quad 6.0 \times 10^{26} \mathrm{~W}$
D. $6.0 \times 10^{26} \mathrm{~J}$

Question 11 (4 marks)

An astronaut has left Earth and is travelling on a spaceship at $0.800 c(\gamma=1.67)$ directly towards the star known as Sirius, which is located 8.61 light-years away from Earth, as measured by observers on Earth.
a. How long will the trip take according to a clock that the astronaut is carrying on his spaceship? Show your working.
\qquad
\qquad
\qquad

b. Is the trip time measured by the astronaut in part a. a proper time? Explain your reasoning.
\qquad
\qquad
\qquad

Question 13

Joanna is an observer in Spaceship P and is watching Spaceship Q fly past at a relative speed of $0.943 c$ $(\gamma=3.00)$. She observes a stationary clock measuring a time interval of 75.0 s between two events in Spaceship Q. This is a proper time interval.

Spaceship Q

Which one of the following is closest to the time interval observed between the two events in Spaceship P's frame of reference?
A. $\quad 15.0 \mathrm{~s}$
B. $\quad 25.0 \mathrm{~s}$
C. 125 s
D. 225 s

Question 10 (4 marks)
Jacinta is standing still while observing a spaceship passing Earth at a speed of 0.984c.
a. Calculate γ for this speed, correct to three significant figures. Show your working.
\qquad
\qquad
\qquad

b. The spaceship is travelling to the Alpha Centauri star system in a straight line at this speed. In Jacinta's frame of reference, this distance is measured to be 4.37 light-years (that is, it would take light 4.37 years to travel this distance).

Calculate the time that would be measured by Jacinta for the spaceship's journey, correct to three significant figures. Show your working.
\qquad
\qquad
\qquad
\square

