Projectile Motion Worksheet

1) A ball rolls with a speed of $2.0 \mathrm{~m} / \mathrm{s}$ across a level table that is 1.0 m above the floor. Upon reaching the edge of the table, it follows a parabolic path to the floor. How far along the floor is the landing spot from the table?

$$
x=2 t
$$

$$
1-\frac{g t^{2}}{2}=0
$$

$$
L=2 \times 0.45=0.9 \mathrm{~m}
$$

2) A rescue pilot drops a survival kit while her plane is flying at an altitude of 2000.0 m with a forward velocity of $100.0 \mathrm{~m} / \mathrm{s}$. If air friction is disregarded, how far in advance of the starving explorer's drop zone should she release the package?

3) A rifle is fired horizontally and travels 200.0 m . The rifle barrel is 1.90 m from the ground. What speed must the bullet have been travelling at? Ignore friction.

$$
\begin{array}{ll}
200 & =v t \\
1.9 & =\frac{9 t^{2}}{2}
\end{array} \quad t=\sqrt{\frac{3.8}{g}}=0.62 ; \quad 200=V \times 0.62
$$

4) A skier leaves the horizontal end of a ramp with a velocity of $25.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ and lands 70.0 m from the base of the ramp. How high is the end of the ramp from the ground?

$$
\begin{array}{ll}
70=25 t & h=\frac{t^{2}}{2} \\
t=\frac{70}{25}=2.8 \mathrm{~s} & h=\frac{9.8 \times 2.8^{2}}{2}=38.4 \mathrm{~m}
\end{array}
$$

5) An astronaut stands on the edge of a lunar crater and throws a half-eaten Twinkies ${ }^{\mathrm{TM}}$ horizontally with a velocity of $5.00 \mathrm{~m} / \mathrm{s}$. The floor of the crater is 100.0 m below the astronaut. What horizontal distance will the Twinkies ${ }^{\mathrm{TM}}$ travel before hitting the floor of the crater? (The acceleration of gravity on the moon is $1 / 6^{\text {th }}$ that of the Earth).
$h=\frac{g / 6 \times t^{2}}{2}=\frac{g t^{2}}{12} \quad t=\sqrt{\frac{100 \times 12}{9.8}}=11.1 \mathrm{~s} \quad L=5 \times 11.1=55.5 \mathrm{~m}$
6) A baseball player leads off the game and hits a long home run. The ball leaves the bat at an angle of 30.0° from the horizontal with a velocity of $40.0 \mathrm{~m} / \mathrm{s}$. How far will it travel in the air?

$$
\begin{aligned}
& L=\frac{44^{2} \sin 2 \theta}{g} \\
& L=\frac{40^{2} \sin 60^{\circ}}{9.8}=141.4 \mathrm{~m}
\end{aligned}
$$

7) A golfer is teeing off on a 170.0 m long par 3 hole. The ball leaves with a velocity of $40.0 \mathrm{~m} / \mathrm{s}$ at 50.0° to the horizontal. Assuming that she hits the ball on a direct path to the hole, how far from the hole will the ball land (no bounces or rolls)?
$L=\frac{4^{2} \sin 2 \theta}{g} L=\frac{40^{2} \sin 100^{\circ}}{9.8}=160.78 \quad 170-160.78=9.22 \mathrm{~m}$
8) A punter in a football game kicks a ball from the goal line at 60.0° from the horizontal at $25.0 \mathrm{~m} / \mathrm{s}$.
a) What is the hang time of the punt?

$$
t=\frac{24 \sin \theta}{y} \quad t=\frac{2 \times 25 \sin 60^{\circ}}{9.8}=4.42 \mathrm{~s}
$$

b) How far down field does the ball land?

$$
L=\frac{4^{2} \sin 2 \theta}{y} \quad L=\frac{25^{2} \sin 120^{\circ}}{9.8}=55.2 \mathrm{~m}
$$

9) A cannon fires a cannonball 500.0 m downrange when set at a $4.5 .0^{\circ}$ angle. At what velocity does the cannonball leave the canon?
$L=\frac{u^{2} \sin 2 \theta}{g} \quad u=\sqrt{\frac{L g}{\sin 2 \theta}} \quad u=\sqrt{\frac{500 \times 9.8}{\sin 90^{\circ}}}=70 \mathrm{~ms}^{-1}$
10) You are piloting a helicopter which is rising vertically at a uniform velocity of 14.70 m / s. When you reach 196.00 m , you see Barney (Uh-oh). A large object is projected with a horizontal velocity of $8.50 \mathrm{~m} / \mathrm{s}$ from the rising helicopter.
a) When does the ball reach Barney's head if he is standing in a hole with his head at ground level?

b) Where does Barney have to be horizontally relative to the helicopter's position?

$$
x=8.5 t=8.5 \times 8=68 \mathrm{~m}
$$

c) What is the vertical velocity when it hits the ground?

$$
\begin{aligned}
v_{y} & =1 U_{y}-g t \quad 63.7 \mathrm{~ms}^{-1} \text { down } \\
v_{y} & =14.7-9.8 \times 8 \\
& =-63.7 \mathrm{~ms}^{-1}
\end{aligned}
$$

11) An object is punted at $25.0 \mathrm{~m} / \mathrm{s}$ at 40.0° on G's home planet. What is the range of the object on level ground? (Use g=18.0 m/s ${ }^{2}$)

$$
L=\frac{4^{2} \sin 2 \theta}{g} \quad L=\frac{25^{2} \sin 80^{\circ}}{18}=34.2 \mathrm{~m}
$$

12) An elastic loaded balloon launcher fires balloons at an angle of 38.0° from the surface of the ground. If the initial velocity is $25.0 \mathrm{~m} / \mathrm{s}$, find how far away the balloons are from the launcher when they hit the level ground again.

$$
L=\frac{4^{2} \sin 2 \theta}{g} L=\frac{25^{2} \sin 76^{\circ}}{9.8}=61.9 \mathrm{~m}
$$

13) A movie stunt driver on a motorcycle speeds horizontally off a 50.0 m high cliff. How fast (in km / h) must the motorcycle leave the cliff-top if it's to land on the level ground below at a distance of 90.0 m from the base of the cliff?

$$
\begin{array}{lll}
x=4 t & y=0 & t=\sqrt{\frac{100}{g}}=3.19 \mathrm{~s} \quad 4=\frac{90}{3.19}=28.2 \mathrm{~ms}^{-1} \\
y=50-\frac{g t^{2}}{2} & \frac{g t^{2}}{2}=50 & 90=4 t \quad 4=28.2 \times 3.6=101.6 \mathrm{~km} / \mathrm{h}
\end{array}
$$

14) A football is kicked at 37.0° to the horizontal at $20.0 \mathrm{~m} / \mathrm{s}$ from the player's hand at 1.00 m from the ground. How far did the football travel before hitting the ground?

$$
\begin{aligned}
& x=20 \cos 37^{\circ} t \\
& y=1+20 \sin 37^{\circ} t-4.9 t^{2} \\
& 4.9 t^{2}-\frac{20 \sin 37^{\circ} t-1}{12.04}=0 \\
& t=\frac{12.04+\sqrt{12.04^{2}+4 \times 4.9}}{2 \times 4.9}=2.54 \mathrm{~s} \\
& L\left.=20 \cos (3)^{0}\right) \times 2.54 \\
&=40.6 \mathrm{~m}
\end{aligned}
$$

15) The same football in \#14 is kicked from the ground instead.
a) Find the maximum height.

$$
H=\frac{u^{2} \sin ^{2} \theta}{2 g}=\frac{20^{2} \sin ^{2}\left(37^{\circ}\right)}{2 \times 2.8}=7.39 \mathrm{~m}
$$

b) Find the time of travel.

$$
t=\frac{2 u \sin \theta}{g}=\frac{2 \times 20 \sin \left(37^{\circ}\right)}{9.8}=2.5 \mathrm{~s}
$$

c) How far away does it hit the ground?

$$
\begin{aligned}
& \text { does it hit the ground? } \\
& L=\frac{u^{2} \sin (2 \theta)}{g}=\frac{20^{2} \sin \left(74^{\circ}\right)}{9.8}=39.24 \mathrm{~m}
\end{aligned}
$$

d) Find the velocity vector at maximum height.

$$
\begin{aligned}
& \text { its vector at maximum height } \\
& \begin{array}{l}
V=U \cos \theta=20 \cos \left(37^{\circ}\right)=15.97 \mathrm{~m} \mathrm{~s}^{-1} \\
\longrightarrow
\end{array}
\end{aligned}
$$

e) Find the acceleration vector at maximum height.

$$
g=9.8 \downarrow
$$

16) The stone is thrown off the top of a building from a height of 45.0 m . The stone has a launch angle of 62.5° and a speed of $31.5 \mathrm{~m} / \mathrm{s}$.
a) H ow long is the stone in flight?

$$
\begin{aligned}
y= & 45+31.5 \sin (62.5)^{\circ} t-4.9 t^{2} \\
& 4.9 t^{2}-31.5 \sin \left(62.5^{\circ}\right) t-45=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { ght of } 45.0 \mathrm{~m} . \text { The stone has a } \\
& 31.5 \sin \left(62.5^{\circ}\right)+\frac{\sqrt{(31.5 \sin (62515)}-}{+4 \times 4.9 \times 45} \\
& 2 \times 4.9
\end{aligned}
$$

b) How far from the base of the building does it travel?

$$
=7 \mathrm{~s}
$$

$$
\begin{aligned}
L=u \cos (\theta) t & =31.5 \cos \left(62.5^{\circ}\right) \times 7 \\
& =101.8 \mathrm{~m}
\end{aligned}
$$

c) W hat is its speed just before it hits the ground?]

$$
\begin{gathered}
V_{x}=4 \cos (\theta)=31.5 \cos (62.5)=14.55 \mathrm{~ms}^{-1} \\
V_{y}=31.5 \sin \left(62.5^{\circ}\right)-9.8 \times 1=-40.66 \mathrm{~m} / \mathrm{s} \\
V=\sqrt{V_{x}^{2}+V_{y}^{2}}=43.2 \mathrm{~ms}^{-1} \\
01 \frac{m v^{2}}{2}=m g h+\frac{\mu u^{2}}{2} \\
v=\sqrt{2 g h+4^{2}}=\sqrt{2 \times 9.8 \times 45+31.5^{2}}=43.3 \mathrm{~ms}
\end{gathered}
$$

17) Student is attempting to jump an alligator on his skateboard as in figure below.

What is the minimum speed student must leave the ramp in order to make the jump?

$$
\begin{array}{ll}
\text { What is the minimum speed student must leave the ramp in order to make the jump? } \\
y=1.2+4 \sin \left(12^{\circ}\right) t-4.9 t^{2} & 4.9 \frac{3.5^{2}}{u^{2} \cos ^{2}\left(12^{\circ}\right)}-3.5 t \operatorname{eu}\left(12^{\circ}\right)-1.2=0 \\
4.9 t^{2}-4 \sin \left(12^{\circ}\right) t-1.2=0 & \frac{62.74}{u^{2}}-1.94=0 \\
x=4 \cos \theta t & u=\sqrt{\frac{62.74}{l .94}}=5.7 \mathrm{us}^{-1}
\end{array}
$$

$$
t=\frac{3.5}{4 \cos \left(12^{\circ}\right)}
$$

18) Student is playing golf. He is hitting golf balls from the top of a cliff into the water below. One ball is hit with an initial speed of $65 \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal. The ball takes 12.5 s from the time it is hit until it lands in the water. What is the height of the cliff? H ow high above the top of the cliff does the ball rise?

$$
\begin{aligned}
& H=\frac{4^{2} \sin ^{2} \theta}{2 y}=\frac{65^{2} \times \sin ^{2}(45)}{19.6}=107.8 \mathrm{~m} \\
& y=6040 \operatorname{con} n+65 \sin \left(45^{\circ}\right) t-4.9 t^{2} \\
& h=4.9 \times 12.5^{2}-65 \sin \left(45^{\circ}\right) \times 12.5=191.1 \mathrm{~m}
\end{aligned}
$$

19) Which of the following graphs below best represents students speed as a function of time whilst airborne?
A.

C.

D.

At the top speed $\neq 0$.
On the way down it is accelerating all time.

