$\mathrm{c}_{\text {water }}=4200 \mathrm{~J} / \mathrm{kgK} \quad \mathrm{c}_{\text {ice }}=2100 \mathrm{~J} / \mathrm{kgK} \quad \mathrm{c}_{\text {copper }}=390 \mathrm{~J} / \mathrm{kgK}$
$L_{f, \text { ice }}=3.34 * 10^{5} \mathrm{~J} / \mathrm{kg} \quad L_{v, \text { water }}=22.5 * 10^{5} \mathrm{~J} / \mathrm{kg}$

Latent heat and Specific heat capacity questions.

1. How much water at $50^{\circ} \mathrm{C}$ is needed to just melt 2.2 kg of ice at $0^{\circ} \mathrm{C}$?
2. How much water at $32^{\circ} \mathrm{C}$ is needed to just melt 1.5 kg of ice at $-10^{\circ} \mathrm{C}$?
3. How much steam at 100° is needed to just melt 5 kg of ice at $-15^{\circ} \mathrm{C}$?
4. A copper cup holds some cold water at $4^{\circ} \mathrm{C}$. The copper cup weighs 140 g while the water weighs 80 g . If 100 g of hot water, at $90^{\circ} \mathrm{C}$ is added, what will be the final temperature of the water?

5. a)Explain where the energy is going at each section of the curve from "a" to "e"
b) Using section "b" , calculate the amount of ice used to produce the graph
c) Using section " c ", calculate the amount of ice used to produce the graph
