Forces worksheet 3

1. Two masses 8 kg and 10 kg are suspended by a light inextensible string over a smooth pulley.
a Find the tension in the string.
b Find the acceleration of the system.

$$
\begin{array}{lll}
10 g-T=10 a & (1) & a=\frac{q}{9}=1.09 \mathrm{~m} \mathrm{~s}^{-2} \\
T-8 g=8 a & (2) & T=10(g-a) \\
(1)+(2) & & T=87.1 \mathrm{~N} \\
2 g=18 a & &
\end{array}
$$

2. Two particles of mass 6 kg and 5 kg connected with a light inextensible string are pulled along a smooth horizontal plane with a force of 10 N . Find: a the acceleration of the system b the tension in the string.

$$
\text { For } 6 \mathrm{~kg}: T=6 a
$$

$$
\begin{aligned}
& \text { For } 5 \mathrm{~kg}: 10-T=5 a \\
& (1)+(2) \\
& 1 \theta=119 \\
& a=0.91 \mathrm{~m} \mathrm{~s}^{-2} \\
& T=6 \times 0.91=5.46 \mathrm{~N}=5.5 \mathrm{~N}
\end{aligned}
$$

3. The diagram shows a particle of mass 4 kg on a smooth horizontal table. The particle is connected by a light inelastic string which passes over a smooth pulley to a particle of mass 8 kg which hangs vertically. Find:
a the acceleration of the system b the tension in the string

$$
\xrightarrow[0]{4 \mathrm{~kg} \square} \prod_{\substack{\hat{\eta}_{8 g}^{8 \mathrm{~kg}}}}^{T}
$$

$$
\begin{aligned}
& \text { For } 4 \mathrm{~kg}: T=4 a \quad \text { (1) } \\
& 8 \mathrm{~kg}: 8 g-T=8 a \\
& (1)+(2) \quad T=4 \times 6.5 \\
& 8 g=12 a \quad T=26 \mathrm{~N} \\
& a=\frac{2 g}{3} \\
& a=6.5 \mathrm{~ms}^{-2}
\end{aligned}
$$

4. A truck of mass 10 tonnes pulls a trailer of mass 5 tonnes with an acceleration of magnitude $2 \mathrm{~m} \mathrm{~s}^{-2}$. The truck exerts a tractive force of magnitude 40000 N . If the trailer has resistance to motion of 750 N :
a what is the tension in the coupling?
b what is the resistance to motion of the truck?

$$
\begin{aligned}
& T T \text { For trailer: } T-750=5000 \times 2 \text { (} 1 \text {) } \\
& \begin{array}{rl}
T \mathrm{~T} & \mathrm{~F} \text { For truck: } 40000-T-F_{f r}
\end{array}=(2) \\
& 750 \mathrm{~N} \text { Ff From (1) } T=10750 \mathrm{~N} \\
& 40000-10750-F_{f t}=20000 \\
& F_{f r}=9250 \mathrm{~N}
\end{aligned}
$$

5. Two particles of respective mass 3 kg and $x \mathrm{~kg}(x>3)$ are connected by a light inextensible string passing over a smooth fixed pulley. The system is released from rest while the hanging portion of the string is taut and vertical. Given that the tension in the string is 37.5 N , calculate the value of x.

$$
\begin{aligned}
& x g-T=x a \\
& T-3 g= 3 a \quad(2) \\
& \text { From }(2): \quad a=\frac{T-3 y}{3} \\
& a=\frac{37.5-3 \times 9.8}{3}=2.7 \mathrm{~ms}^{2} \\
& \text { From }(1): x(g-a)=T \\
& x=\frac{T}{g-a} \quad x=\frac{37.5}{9.8-2.7}=5.3 \mathrm{~kg}
\end{aligned}
$$

6. An engine of mass 40 tonnes is pulling a truck of mass 8000 kg up a smooth plane inclined at the angle of 10°. If the tractive force exerted by the engine is 85000 N , calculate:
a the acceleration of the engine
b the tension in the coupling between the engine and the truck

$$
\begin{aligned}
& \text { Truck: } T-8000 \mathrm{~g} \sin 10^{\circ}=8000 a \\
& \text { Engine: } F-T-40000 \mathrm{~g} \sin 10^{\circ}=40000 \mathrm{c} \\
& (1)+(2) \quad \mathrm{F}) \\
& \mathrm{a}-4000 \\
& T=80.07 \mathrm{~ms} \\
& T=8000\left(a+g \sin 10^{\circ}\right) \\
& T=14174 \mathrm{~N}
\end{aligned}
$$

7. The diagram shows masses of 8 kg and 12 kg lying on a smooth horizontal table and joined, by a light inextensible string, to a mass of 5 kg hanging freely. This string passes over a smooth pulley at the edge of the table.
The system is released from rest. Find:
a the tension in the string connecting the 8 kg and 12 kg masses b the tension in the string connecting the 12 kg and 5 kg masses che acceleration of the system

$$
\begin{align*}
& 5 \mathrm{~kg}: 5 g-T_{1}=5 a \tag{1}\\
& 12 \mathrm{~kg}: T_{1}-T_{2}=12 \mathrm{al}
\end{align*}
$$

$$
\begin{equation*}
8 \mathrm{~kg}: T_{2}=8 a \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& (1)+(4) \\
& 5 g=25 a \\
& a=\frac{q}{5} \\
& a=1.96 \mathrm{~ms}^{-2}
\end{aligned}
$$

$$
T_{1}=20 \times 1.96
$$

$$
T_{2}=8 \times 1.96
$$

$$
T_{1}=39.2 \mathrm{~N}
$$

$$
T_{2}=15.68
$$

$$
=15.7 \mathrm{~N}
$$

8. hanging mass of 200 g drags a mass of 500 g along a rough table three metres from rest in three seconds. What is the friction force?

$$
\begin{aligned}
& S=\frac{a t^{2}}{2} \quad a=\frac{2 \mathrm{~s}}{t^{2}} \quad a=\frac{2 \times 3}{3^{2}}=0.67 \mathrm{~ms}^{-2} \\
& T-F_{f r}=0.59 a \quad(1) \\
& 0.2 g-T=0.2 a \quad(2) \\
& (1)+\left(\frac{1}{2}\right) \\
& 0_{c} 2 g-F_{f r}=0.7 a \\
& F_{f r}=0.2 g-0.7 a \\
& F_{f r}=0.2 \times 9.8-0.7 \times 0.67 \\
& =1.5 \mathrm{~N}
\end{aligned}
$$

9. Two masses are connected by a string and are hanging from the ceiling of an elevator as shown. Find the tensions in each string if elevator:
a moving up at $3.0 \mathrm{~m} \mathrm{~s}^{-1}$
b moving down at $3.0 \mathrm{~m} \mathrm{~s}^{-2}$
c moving up at $3.0 \mathrm{~m} \mathrm{~s}^{-2}$
d Newton's third law is sometimes stated as 'To every action there is an equal and opposite reaction'. If the weight (the gravitational force by Earth) of the 4 kg mass is taken as the 'action' force, identify the corresponding 'reaction' force and give its direction.

$$
\begin{align*}
& \left.\left.T_{1}\right|^{\text {stoma }} \quad a\right) \text { fear } a=0 \\
& T_{2}-6 g=0 \\
& T_{1}-T_{2}-4 g=0 \tag{2}\\
& \text { (1) }+ \text { (2) } T_{1}=10 \mathrm{~g} \quad T_{1}=98 \mathrm{~N} \quad T_{2}=58.8 \mathrm{~N} \\
& \text { b) } \\
& 6 g-T_{2}=6 \times 3 \\
& 4 g+T_{2}-T_{1}=4 \times 3 \quad(2) \\
& \text { (1) +(2) } \quad 10 g-T_{1}=30 \quad T_{1}=10 g-30=68 \mathrm{~N} \\
& T_{2}=6 \mathrm{~g}-18 \quad T_{2}=40.8 \mathrm{~N}
\end{align*}
$$

c)

$$
\begin{align*}
& T_{1}-4 g-T_{2}=4 \times 3 \\
& T_{2}-6 g=6 \times 3 \tag{2}
\end{align*}
$$

From (2)
Sub in (1)

$$
\begin{aligned}
& T_{1}=4 g+76.8+12 \\
& T_{1}=128 \mathrm{~N}
\end{aligned}
$$

d) As action force is by Earth on 4 kg clown, reaction will be 4 ky on Earth up.

