Forces worksheet 1

1. a A body of mass 8 kg is moving with an acceleration of $4 \mathrm{~m} / \mathrm{s} 2$ in a straight line. Find the resultant force acting on the body.
b A body of mass 10 kg is moving in a straight line. The resultant force acting on the body is 5 N . Find the magnitude of the acceleration of the body.
2. a A force of 10 N acts on a particle of mass $m \mathrm{~kg}$ and produces an acceleration of $2.5 \mathrm{~m} \mathrm{~s}^{-2}$. Find the value of m.
b A force of $F \mathrm{~N}$ acts on a particle of 2 kg and produces an acceleration of $3.5 \mathrm{~m} \mathrm{~s}^{-2}$. Find the value of F.
3. An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ in a magnetic field has at a given instant, an acceleration of $6 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-2}$. Find the resultant force on the electron at that instant.
4. A truck of mass 25 tonnes is travelling at $50 \mathrm{~km} / \mathrm{h}$ when its brakes are applied. What constant force is required to bring it to rest in 10 seconds?
5. What force is necessary to accelerate a train of mass 200 tonnes at $0.2 \mathrm{~m} \mathrm{~s}^{-2}$ against a resistance of 20000 N ? What will be the acceleration if the train free-wheels against the same resistance?
6. What size mass would be accelerated upwards at $1.2 \mathrm{~m} \mathrm{~s}^{-2}$ by the vertical force of 96 N?
7. A parachutist of mass 75 kg , whose parachute only partly opens, accelerates downwards at $1 \mathrm{~m} \mathrm{~s}^{-2}$. What upward force must her parachute be providing?
8. In a lift that is accelerating upwards at $2 \mathrm{~m} \mathrm{~s}^{-2}$ the normal reaction is 24.5 N . What would be the normal reaction if the lift were at rest?
9. A box of mass 10 kg lies on the horizontal floor of a lift which is accelerating upwards at $1.5 \mathrm{~m} \mathrm{~s}^{-2}$. Find the reaction, in newtons, of the lift floor on the box.
10. In a lift that is accelerating downwards at $1 \mathrm{~m} \mathrm{~s}^{-2}$, a normal reaction is 24.5 N . What would be the normal reaction if the lift was:
a at rest?
b accelerating upwards at $2 \mathrm{~m} \mathrm{~s}^{-2}$?
11. A reindeer is hauling a heavy sled of mass 300 kg across a rough surface. The reindeer exerts a horizontal force of 600 N on the sled while the resistance to the sled's motion is 550 N . If the sled is initially at rest, find the velocity of the sled after three seconds.
12. The engine of a train of mass 200 tonnes exerts a force of 78400 N , and the total air and rail resistance is $196 \mathrm{~N} /$ tonne. How long will it take the train on level ground to acquire a speed of $30 \mathrm{~km} / \mathrm{h}$ from rest?
13. One man can push a wardrobe of mass 250 kg with an acceleration of magnitude $0.15 \mathrm{~m} \mathrm{~s}^{-2}$. With help from another man pushing just as hard (i.e. with the same force), the wardrobe accelerates at $0.4 \mathrm{~m} \mathrm{~s}^{-2}$. How hard is each man pushing and what is the resistance to sliding?
14. A load of 200 kg is being raised by a cable. Find the tension in the cable when: a the load is lifted at a steady speed of $2 \mathrm{~m} / \mathrm{s}$
b the load is lifted with an upward acceleration of $0.5 \mathrm{~m} \mathrm{~s}^{-2}$
