Multiple choice solutions

Example 12000 Question 13, 80\%

When the switch closes, the current will flow in the circuit as shown in the figure.
This will cause of force to act on the LHS of the coil in an upward direction. The coil will rotate 90° in a clockwise direction about the axis of rotation.
At this point the force will want to keep acting in the same direction (up).
What happens next depends on friction.
Assume a lot of friction, then the coil will stay at this position.
$\therefore \mathrm{A}$
(ANS)
Assume not much friction, then the coil will overshoot the vertical position, so now the force will act to make it rotate in an anti-clockwise direction, etc, etc.
This means that the coil will oscillate about this vertical position eventually coming to rest in a vertical plane.
\therefore B (ANS)
The examiners accepted both responses.

Example 22000 Question 14, 80\%

The purpose of the split rings (commutator) is to reverse the direction of the current every half cycle, so the coil will continue to rotate.

$$
\therefore \mathrm{D}
$$

(ANS)
Example 31986 Question 69

The field is from left to right, the current is from front to back, so the force on the LHS is down Therefore the loop will rotate anti-clockwise.

$$
\therefore \mathbf{A}
$$

(ANS)

Extended response solutions

Example 42011 Question 3, 83\%

The role of the commutator is to reverse the direction of the current every half turn, so that the direction of the force on the current carrying wire is reversed every half turn, in order to keep the motor rotating in the same direction. The current changes when the coil is at right angles to the field

Example 52011 Question 4, 70\%

Use the right hand slap rule. Thumb (current) pointing from J to K , fingers (field) pointing from N to S (in this case left to right). The palm is now in the direction of the force. It should be facing down.

Example 62011 Question 5, 85\%

Use $\mathrm{F}=\mathrm{nBIL}$
And remember the $\mathrm{L}=5 \mathrm{~cm}=0.05 \mathrm{~m}$.
$\therefore \mathrm{F}=50 \times 0.3 \times 6 \times 0.05$
$\therefore 4.5 \mathrm{~N} \quad$ (ANS)

Example 72009 Question 5, 75\%

The field is from North to South, the current is flowing from T to U , so the force is UP.

Example 82009 Question 6, 90\%

$\mathrm{F}=\mathrm{nBIL}$
$=1 \times 0.25 \times 2 \times 0.0090$
$=4.5 \times 10^{-3} \mathrm{~N}$
(ANS)

Example 92009 Question 7, 85\%

As shown, the side UV was parallel to the magnetic field, therefore the force was zero.

$$
\therefore 0 \mathrm{~N}
$$

Example 102009 Question 8, 80\%

The role of the split ring commutator is to reverse the direction of the current in a DC motor every half rotation.
This (reversal every half cycle) keeps the torque in the same direction which allows the motor to keep rotating in the same direction.

Example 112008 Question 2, 90\%

Using the right hand rule, the hand is opened flat and the fingers are aligned with the magnetic field. The thumb is pointed in the direction of current flow and the palm is now facing the direction of the force.
Use the right - hand slap rule and you will see that the direction of the current is from A to B
$\therefore A B$ (ANS)

Example 122008 Question 3, 85\%

It was important to see that the length of wire in the magnetic field was 40 cm or 0.4 m from the diagram.

$$
F=B I L
$$

$=2.0 \times 10^{-3} \times 5.0 \times 0.4$
$=4.0 \times 10^{-3} \mathrm{~N}$ (ANS)

Example 132007 Question 4, 70\%

a. Anti-clockwise
b. When the switch is closed the current will flow from J to K to L to M . The magnetic field is from left to right (N to S .
Using the right hand rule, the force on JK will be down. The loop will rotate anti-clockwise.

Example 142007 Question 5, 65\%

The role of the split ring commutator is to reverse the direction of the current in a DC motor every half rotation.
This (reversal every half cycle) keeps the torque in the same direction which allows the motor to keep rotating in the same direction.

Example 151999 Question 4, 68\%

Use $\mathrm{F}=\mathrm{nBiL}$
$\therefore \mathrm{F}=50 \times 0.040 \times 1.5 \times 0.05$
$\therefore \mathrm{F}=0.15 \mathrm{~N}$

Example 161999 Question 5, 68\%

The force on KL is zero, as it is parallel to the field.

$$
\therefore 0 \mathrm{~N}
$$

(ANS)

Example 171999 Question 6, 42\%

With the coil in a vertical position, the force on JK will be up. The force on LM will be down. These two forces will not cause a rotation, but will have a tendency to stretch the coil.
The force on KL will also be outward, to the back of the coil, and the force on JM will be outward, but to the front of the coil, again tending to cause the coil to stretch outwards.

Therefore the coil will remain stationary.

Example 181998 Question 6

$\mathrm{F}=\mathrm{nBIL}$
$F=1 \times 0.010 \times 0.30 \times 0.30$
$\therefore \mathrm{F}=0.0009 \mathrm{~N}$
$=9 \times 10^{-4} \mathrm{~N}$

Example 191998 Question 7

a) pointing to the left
b) pointing to the left
c) pointing to the left
(a) The field is down, the current is into the page, so the thumb points into the page with the fingers pointing down. This makes the palm of your hand face left, so the force is in the direction pointing to the left
(b) The field is down, the current is into the page, so the thumb points into the page with the fingers pointing down. This makes the palm of your hand face left, so the force is in the direction pointing to the left
(c) The field is down, the current is into the page, so the thumb points into the page with the fingers pointing down. This makes the palm of your hand face left, so the force is in the direction pointing to the left
There isn't any change in the 3 orientations, the field was constant, and the wire had a current going into the page in these three situations, so each ANS)wer has to be identical. Don't get fussed that on the exam, they actually gave you such a simple question. You need to solve every problem on its merits.

Example 201998 Question 8

a) NF
b) Into the plane of the page
(a) The section of wire XY is parallel to the field, so this means that the force acting on it will be zero.
(b) Now the wire is at right angles to the field, so there will be a force acting on it. The field is down the page (direction of your fingers the current is from left to right across the page (direction of your thumb). So your palm must be facing into the page (you need a flexible wrist for this. So the force is into the plane of the page. Remember that you need to circle the head of the arrow.

Example 211997 Question 9, 50\%

Place your fingers in the direction of the field, from left to right. For the loop to rotate clockwise the force on KL must be upwards. So have your palm facing up. This means that your thumb points from K-L.
So the current flows from K to L .

Example 221997 Question 10, 70\%

$\mathrm{F}=\mathrm{nBIL}$
$0.60=1 \times 1.5 \times I \times 0.1$
$\therefore \mathrm{I}=4 \mathrm{amp}$

Example 231997 Question 11, 43\%

a. If the coil starts in this position, the forces acting on KL and MN will spin the loop in the direction shown, because of the torques acting.
b. If the coil starts in this position the forces acting on KL and MN will tend to try to squeeze or expand the loop, but not spin it.

Example 241996 Question 7

Use $\mathrm{F}=\mathrm{nBiL}$
$\therefore F=20 \times 3.0 \times 10^{-2} \times 2.0 \times 0.05$
$\therefore \mathrm{F}=0.06 \mathrm{~N}$
(ANS)

Example 251996 Question 8

The wire is parallel to the magnetic field, therefore the force is zero.

$0 \mathrm{~N} \quad$ (ANS)

Example 261996 Question 9

When the coil is in the horizontal plane the torque will be exactly the same as before. Once it moves from this plane the torque will be greater than if the sides were perpendicular. This is because the magnetic field is perpendicular to the wire longer. This means that the maximum torque is exerted on the wire for a greater time.

Example 271995 Question 9, 40\%

The force on VW is zero, as it is parallel to the field.

$$
\therefore 0 \mathrm{~N} \quad \text { (ANS) }
$$

Example 281995 Question 10, 35\%

The current will flow from X to Y , so the force on XY is down. The force on VU will be up. These two forces combine to produce a torque initially causes the loop to rotate in a clockwise direction around the dotted line on the figure.

When UV is at the top, the commutator will reverse the direction of the current, and hence the direction of the force will also reverse, so now instead of UV having a force acting up, the force will act down, to continue with the clockwise rotation.

Example 29

The force on UV is given by

$$
\begin{aligned}
& \mathrm{F}=\mathrm{nBiL} \\
& \therefore \mathrm{~F}=1 \times 0.50 \times 500 \times 10^{-3} \times 0.03 \\
& \therefore \mathrm{~F}=7.5 \times 10^{-3} \mathrm{~N} \quad \text { (ANS) }
\end{aligned}
$$

Example 301994 Question 1

The force on WX is down, as given by the right hand rule
The force on $X Y$ is zero, as it is parallel to the field.

Example 311994 Question 2

Use $F=n B i L$
$\therefore F=50 \times 0.048 \times 2.0 \times 0.05$
$\therefore F=0.24 \mathrm{~N}$
(ANS)

Example 321994 Question 3

The force on WX is perpendicularly (to the field) up, and the force on $Y Z$ is down.
The maximum torque will occur when the plane of the loop is horizontal.
Hence $\tau=\mathrm{Fxd}$

\therefore bigger ' d ', for same ' F ', leads to bigger torque.

$$
\therefore C+F \quad \text { (ANS) }
$$

Example 331994 Question 4

Increase the number of coils,
\therefore bigger $\mathrm{F} \Rightarrow$ larger τ
Longer length of coils,
\therefore bigger $\mathrm{F} \Rightarrow$ larger τ
Stronger magnets
\therefore bigger $\mathrm{F} \Rightarrow$ larger τ
Wider coils, \therefore bigger $\mathrm{d} \Rightarrow$ larger τ
Increase the current,
\therefore bigger $\mathrm{F} \Rightarrow$ larger τ

Example 341993 Question 4

The split-ring commutator reverses the direction of the current every half cycle, as the coil moves through the position where its plane is perpendicular to the field.
This reversal of current reverses the direction of the force acting on both wires.

This allows the loop to continue to rotate in the one direction.

Example 351993 Question 5

The field is from left to right.
To get the coil to rotate clockwise the force on 'ad' needs to be up.
Therefore the current is from ' d ' to ' a '

This means that Y needs to connect to the positive terminal of the battery.

Example 361986 Question 70)

The force on $X Y$ is given by

$$
\mathrm{F}=\mathrm{nBiL}
$$

$\therefore F=1 \times 0.1 \times 5.0 \times 0.04$
$\therefore F=0.02 \mathrm{~N}$
(ANS)

\checkmark Question 16 (6 marks)

A diagram of a DC motor is shown in Figure 21.

Figure 21
a. The motor is operating and the rectangular coil is rotating about the axis of rotation. Mary views the operating motor from point Q .
Is the direction of rotation clockwise or anticlockwise? Give a reason for your answer.
Anticlockwise. Force on $W X$ is down according 50%
to RHS rule, on LY - up. Magnetic field
from left to right, current in $W X$ into the
page(from w to x)
b. While in the position shown in the diagram, a current of 0.50 A is flowing in the rotating coil. The coil has 20 turns and the magnetic field at the side labelled WX has a strength of 500 mT . The side WX has a length of 5.0 cm .
Calculate the magnitude of the force on the side WX.

$$
\begin{aligned}
F & =n B I L \\
& =20 \times 0.5 \times 0.5 \times 0.05
\end{aligned}
$$

\qquad
\qquad

$$
0.25 \mathrm{~N}
$$

c. There is a split-ring commutator fitted to the motor. Mary suggests that the split-ring commutator causes a lot of friction on the motor, and that the motor would rotate faster if the split-ring commutator were removed and, instead, slip-rings were used to connect the input DC current to the rotating coil. Would this change improve the operation of the motor? Give reasons for your answer.
It would not improve the operation. The coil will
turn 90° and stop as slip rings wouldn't reverse the current in the coil. So torque on the coil will not rotate it.

Question 17 (11 marks)

Students conduct an experiment that is shown in Figure 22. An aluminium ring is made to oscillate vertically between point A and point B. Point C is the midpoint between A and B. A strong, small bar magnet is fixed at the centre of the oscillation, as shown in Figure 22.

Figure 22
The vertical dashed line goes through the centre of the aluminium ring and also through the centre of the bar magnet in the diagram.

\checkmark Question 14 (5 marks)

Students build a simple electric motor, as shown in Figure 18.

Figure 18
a. At what positions) (A.-D.) of the rotating coil is the magnetic force on the side XY zero? One or more answers may be selected.
B. horizontal with the current in the opposite direction to that shown in Figure 18
C. vertical
D. at all orientations of the coil

A and B

b. The students discover that the motor starts moving more easily with the coil in some orientations than in others.

Explain the best orientations) for starting the motor to move from rest.
The best orientation is horizontal. In this position the torque is maximal.
\qquad
\qquad
\qquad
\qquad
c. To increase the speed of rotation of the motor, the students suggest a number of improvements. Which suggested improvements) (A.-D.) is likely to increase the speed of rotation of the coil? One or more answers may be selected. Explain your answer.
A. increase the battery voltage
B. replace the single coil of the motor with several turns
C. increase the resistance of the coil
D. reverse one of the poles of the permanent magnets
\square Increasing voltage will increase current in the
leap. According to $F=n B$ il force will increase.
If number of turns will increase force will
increase ($F=n B I L$)
\checkmark Question 13 (6 marks)
Students build a simple electric motor consisting of a single coil and a split-ring commutator, as shown in Figure 21.
The magnetic field between the pole pieces is a constant 0.02 T .

Figure 21
a. Calculate the magnitude of the force on the side WX.
\qquad

$$
=0.02 \times 0.5 \times 0.05
$$

$$
5 \times 10^{-4} \mathrm{~N}
$$

b. Will the coil rotate in a clockwise or anticlockwise direction as seen by an observer at the split-ring commutator? Explain your answer.

is up.
c. Explain the role of the split-ring commutator in the operation of the electric motor. Role is to reverse the direction of the current every half turn to keep the motor rotating in the same direction

Question 3 (5 marks)

Figure 2 shows a schematic diagram of a simple DC motor.
It consists of two magnets, a single 9.0 V DC power supply, a split-ring commutator and a rectangular coil of wire consisting of 10 loops.
The total resistance of the coil of wire is 6.0Ω.
The length of the side JK is 12 cm and the length of the side KL is 6.0 cm .
The strength of the uniform magnetic field is 0.50 T .

Figure 2
a. Determine the size and the direction (A-F) of the force acting on the side JK.
$I=\frac{V}{R}=\frac{9}{6}=1.5 \mathrm{~A}$
$F=n B I L=10 \times 0.5 \times 1.5 \times 0.12=0.9 \mathrm{~N}$
\qquad
\qquad
0.9 N Direction down
b. What is the size of the force acting on the side KL in the orientation shown in Figure 2? Explain your answer.

$$
\begin{aligned}
& \text { Current } \\
& \text { field }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
0 N

Question 3 (5 marks)
Students build a model of a simple DC motor, as shown in Figure 3.

Figure 3
a. The motor is set with the coil horizontal, as shown, and the power source is applied.

Will the motor rotate in a clockwise (C) or anticlockwise (A) direction? Explain your answer.
\square
Clockwise
\qquad
b. One student suggests that slip rings would be easier to make than a commutator and that they should use slip rings instead.

Explain the effect that replacing the commutator with slip rings would have on the operation of the motor, if no other change was made.
\qquad 23% quarter of the revolution and step in the vertical position.

SECTION B

Instructions for Section \mathbb{B}

Answer all questions in the spaces provided.
Where an answer box is provided, write your final answer in the box.
If an answer box has a unit printed in it, give your answer in that unit.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the value of g to be $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

Question 1 (5 marks)

Figure 1 shows four positions ($1,2,3$ and 4) of the coil of a single-turn, simple DC motor. The coil is turning in a uniform magnetic field that is parallel to the plane of the coil when the coil is in Position 1 , as shown.

When the motor is operating, the coil rotates about the axis through the middle of sides $L M$ and $N K$ in the direction indicated. The coil is attached to a commutator. Current for the motor is passed to the commutator by brushes that are not shown in Figure 1.

uniform magnetic field

Figure 1
a. When the coil is in Position 1, in which direction is the current flowing in the side $K L-$ from K to L or from L to K ? Justify your answer.
Applying $\frac{R H S R}{(\mathrm{Im})}$ current flows from K to $L \quad{ }^{2 \text { marks }} 42 \%$

