1. 6 resistors are connected to the 9 V battery as shown.

- a. Find total resistance of this circuit.
- b. Find current through resistor 5 Ω
- c. Find voltage drop across 2 Ω resistor
- d. Find current through 6 Ω resistor.
- d. Find voltage drop across 9 Ω resistor.
- e. Find current through 18 Ω resistor.

2. Find current in all resistors and find voltage across each resistor.

A series-parallel combination circuit

3. Find current in all resistors and find voltage across each resistor. Battery provides 12V.

 $R_1 = 50'\Omega, R_2 = 200'\Omega, R_3 = 100'\Omega, R_4 = 50'\Omega, R_5 = 150'\Omega, R_6 = 100'\Omega$

4. Find current in all resistors and find voltage across each resistor.

5. Find current in all resistors and find voltage across each resistor. $R_1 = 25 \text{ ohms}$ $R_3 = 5 \text{ ohms}$

	R_1	R ₂	R ₃	R_4	Total
v					11 V
Ι					
R	1 kΩ	500 Ω	150Ω	450 Ω	
Р					