Binding Energy and Mass defect

Data:

Particle	Relative Charge	Electric Charge (C)	Relative Mass (u)	Mass (kg)
Electron	-1	-1.60×10^{-19}	5.485779×10^{-4}	9.109390×10^{-31}
Proton	+1	$+1.60 \times 10^{-19}$	1.007276	1.672623×10^{-27}
Neutron	0	0	1.008665	1.674929×10^{-27}
$\mathbf{1 u}=\mathbf{1 . 6 6 0 5} \times \mathbf{1 0}^{-27} \mathbf{~ k g}$				
$\mathbf{1 e V}=\mathbf{1 . 6 0} \times \mathbf{1 0}^{-\mathbf{1 9}}$ Joules				
The 'cheating' equivalence shortcut				
$\mathbf{1 u = ~ 9 3 1 . 5 ~ M e V ~}$				

Problem

${ }_{2}{ }_{2} \mathrm{H}$ is the most abundant isotope of helium. Its mass is $6.6447 \times 10^{-27} \mathrm{~kg}$. What is
a) The mass defect?
b) The binding energy of the nucleus in joules?
c) The binding energy of the nucleus in electron volts?

Questions:

1) ${ }^{238}{ }_{92} \mathrm{U}$ decays into ${ }^{234}{ }_{90} \mathrm{Th}$ and an alpha particle
a) Write down the full decay equation
b) How much energy is released.

Mass of ${ }^{233}{ }_{92} \mathrm{U}=238.0508 \mathrm{u}$
Mass of ${ }^{234}{ }_{90}{ }^{\text {Th }}=234.0426 \mathrm{u}$
Mass of ${ }^{4} \alpha=4.0026 u$
2) Calculate the mass defect and binding energy the nuclide ${ }^{10} 5 \mathrm{~B}$ where the mass of ${ }^{10} 5 \mathrm{~B}$ atom $=10.0129 \mathrm{u}$
3) Oxygen has an unstable isotope $0-17$ that has a mass of 17.00454 . If the mass of a neutron is 1.00898 u and the mass of a proton is 1.00814 u , calculate the binding energy of the oxygen nucleus in MeV .
4) A thorium atom of mass $232.038 u$ decays by the emission of an alpha particle to a radium atom of mass 228.031 u . If the alpha particle has a mass of 4.003 u , how much energy in J is released in the process ?
5) The fusion reaction below is one of the final stages in the fusion process that occurs in the Sun.

```
\mp@subsup{}{}{2}}\textrm{H}+\mp@subsup{}{}{3}\textrm{H}->\mp@subsup{}{}{4}\textrm{He}\quad
1 1 2
```

(a) Complete the reaction identifying the missing particle.
(b) Calculate the energy released in the fusion reaction using the following information (you will also need the mass of the other particle).

$$
\begin{aligned}
& { }_{1}^{2 \mathrm{H}} \quad=3.345 \times 10^{-27} \mathrm{Kg} \\
& { }_{1}^{3 \mathrm{H}} \quad \rightarrow \quad 5.008 \times 10^{-27} \mathrm{Kg} \\
& { }_{2}^{4} \mathrm{He}
\end{aligned}
$$

