Binding Energy and Mass defect

Data:

Particle	Relative	Electric	Relative Mass	Mass (kg)	
	Charge	Charge (C)	(u)		
Electron	-1	-1.60 x 10 ⁻¹⁹	5.485779 x 10 ⁻⁴	9.109390 x 10 ⁻³¹	
Proton	+1	+1.60 x 10 ⁻¹⁹	1.007276	1.672623 x 10 ⁻²⁷	
Neutron	0	0	1.008665	1.674929 x 10 ⁻²⁷	
1u = 1.6605 x 10 ⁻²⁷ kg					
1eV = 1.60 x 10 ⁻¹⁹ Joules					
The 'cheating' equivalence shortcut					

Problem

 $^{4}{}_{2}$ H is the most abundant isotope of helium. Its mass is 6.6447x 10⁻²⁷kg. What is

- a) The mass defect?
- b) The binding energy of the nucleus in joules?
- c) The binding energy of the nucleus in electron volts?

Questions:

1) ²³⁸₉₂U decays into ²³⁴₉₀Th and an alpha particle

- a) Write down the full decay equation
- b) How much energy is released.

Mass of ²³⁸ 92U	= 238.0508u
Mass of 23490Th	= 234.0426u
Mass of ${}^{4}2\alpha$	= 4.0026u

2) Calculate the mass defect and binding energy the nuclide ${}^{10}{}_5B$ where the mass of ${}^{10}{}_5B$ atom = 10.0129 u

3) Oxygen has an unstable isotope O-17 that has a mass of 17.00454. If the mass of a neutron is 1.00898 u and the mass of a proton is 1.00814 u, calculate the binding energy of the oxygen nucleus in MeV.

4) A thorium atom of mass 232.038 u decays by the emission of an alpha particle to a radium atom of mass 228.031 u. If the alpha particle has a mass of 4.003 u, how much energy in J is released in the process ?

5) The fusion reaction below is one of the final stages in the fusion process that occurs in the Sun.

 ^{2}H + ^{3}H \rightarrow ^{4}He + 1

- (a) Complete the reaction identifying the missing particle.
- (b) Calculate the energy released in the fusion reaction using the following information (you will also need the mass of the other particle).

²H₁ = 3.345×10^{-27} Kg ³H₁ \rightarrow 5.008×10^{-27} Kg ⁴He₂ 6.647×10^{-27} Kg