Binding Energy and Mass defect

Worked Examples and questions

Data:

Particle	Relative Charge	Electric Charge (C)	Relative Mass (u)	Mass (kg)	
Electron	-1	-1.60 x 10 ⁻¹⁹	5.485779 x 10 ⁻⁴	9.109390 x 10 ⁻³¹	
Proton	+1	+1.60 x 10 ⁻¹⁹	1.007276	1.672623 x 10 ⁻²⁷	
Neutron	0	0	1.008665	1.674929 x 10 ⁻²⁷	
1u = 1.6605 x 10 ⁻²⁷ kg					
$1eV = 1.60 \times 10^{-19}$ Joules					
<i>The 'cheating' equivalence shortcut 1u= 931.5 MeV</i>					

Problem

 4 ₂H is the most abundant isotope of helium. Its mass is 6.6447x 10⁻²⁷kg. What is a) The mass defect? b) The binding energy of the nucleus in joules? c) The binding energy of the nucleus in electron volts? Solution a) Mass of component parts m = 2p+2n $= 2(1.672623 \times 10^{-27}) + 2(1.674929 \times 10^{-27})$ $m = 6.6950 \times 10^{-27} kg$ Mass defect = 6.6950×10^{-27} kg - 6.6447×10^{-27} kg $= 5.03 \times 10^{-29} \text{kg}$ b) Binding energy using $E = mc^2$ $E = [5.03 \times 10^{-29} \text{kg}] \times [3 \times 10^{8}]^{2}$ $E = 4.53 \times 10^{-12}$ Joules $= 4.53 \times 10^{-12} \times 1.60 \times 10^{-19}$ c) Binding energy $= 2.83 \times 10^7 \, \text{eV}$ [= 28.3 MeV]

Questions:

1) ²³⁸₉₂U decays into ²³⁴₉₀Th and an alpha particle

- a) Write down the full decay equation
- b) How much energy is released.

Mass of ²³⁸ 92U	= 238.0508u
Mass of 23490 Th	= 234.0426u
Mass of ${}^{4}_{2}\alpha$	= 4.0026u

2) Calculate the mass defect and binding energy the nuclide $^{10}{}_5\text{B}$ where the mass of $^{10}{}_5\text{B}$ atom = 10.0129 u

3) Oxygen has an unstable isotope O-17 that has a mass of 17.00454. If the mass of a neutron is 1.00898 u and the mass of a proton is 1.00814 u, calculate the binding energy of the oxygen nucleus in MeV.

4) A thorium atom of mass 232.038 u decays by the emission of an alpha particle to a radium atom of mass 228.031 u. If the alpha particle has a mass of 4.003 u, how much energy in J is released in the process ?

5) The fusion reaction below is one of the final stages in the fusion process that occurs in the Sun.

 ^{2}H + ^{3}H \rightarrow ^{4}He + 1 1 2

- (a) Complete the reaction identifying the missing particle.
- (b) Calculate the energy released in the fusion reaction using the following information (you will also need the mass of the other particle).

 ${}^{2}\text{H}_{1} = 3.345 \times 10^{-27} \text{ Kg}$ ${}^{3}\text{H}_{1} \rightarrow 5.008 \times 10^{-27} \text{ Kg}$ ${}^{4}\text{He}_{2} = 6.647 \times 10^{-27} \text{ Kg}$

Solutions.

1) a) ²³⁸₉₂U → ²³⁴₉₀Th + ⁴₂α b) First calculate mass change 238.0508u - (234.0426u + 4.0026u) mass change = 5.6 × 10⁻³u Convert to kg = 5.6 × 10⁻³u × 1.6605 × 10⁻²⁷kg Mass defect = 9.2988 × 10⁻³⁰ Energy released E = mc² = 9.2988 × 10⁻³⁰x (3×10⁸)² = 8.36892 × 10⁻¹³ J

2) Calculate the mass defect and binding energy the nuclide $^{10}{}_5\text{B}$ where the mass of $^{10}{}_5\text{B}$ atom = 10.0129 u

 $^{10}{}_5\text{B}$ has 5 protons and 5 neutrons

Total mass of nucleons	= = =	mass of protons+mass of neutrons5 [1.007276u]+5 [1.008665u]5.03638u+5.04332510.079705u-
Mass defect	= = =	Mass of nucleons - mass of ¹⁰ ₅ B nucleus 10.079705u - 10.0129 u 0.066805
Mass defect in Kg	=	1.1093 x 10 ⁻²⁸ Kg
Binding Energy E	= = =	mc ² 1.1093 x 10 ⁻²⁸ x $(3 \times 10^8)^2$ 9.9836 x 10 ⁻¹² J
Binding Energy in eV	= = =	9.9836 x 10 ⁻¹² J / 1.6 x 10 ⁻¹⁹ 6.2398 x 10 ⁷ eV 624 MeV

3) O-17 ¹⁷₈O has 8 protons in the nucleus and 9 neutrons

Total mass of nucleons	= = =	mass of protons + mass of neutrons 8 [1.007276u] + 9 [1.008665u] 8.058208u + 9.077985u 17.136193u
Mass defect	= = =	Mass of nucleons - mass of O17 nucleus 17.136193u - 17.00454u 0.131653u
Mass defect in Kg	= =	0. 131653 x 1.6605 x 10 ⁻²⁷ 2.186 x 10 ⁻²⁸ Kg
Binding Energy E	= = =	mc ² 2.186 x 10 ⁻²⁸ x (3 x 10 ⁸) ² 1.9675 x 10 ⁻¹¹ J
Binding Energy in eV = = =		1.9675 x 10 ⁻¹¹ J / 1.6 x 10 ⁻¹⁹ 1.2297 x 10 ⁸ eV 123 MeV

4)A thorium atom of mass 232.038 u decays by the emission of an alpha particle to a radium atom of mass 228.031 u. If the alpha particle has a mass of 4.003 u, how much energy in J is released in the process ?

Write out the reaction first (words will do here)

Thorium \rightarrow Radium + alpha particle

Calculate mass of products and reactants in terms of u

Reactants 232.038u 232.038u			Products 228.031 + 4.003 232.034
Calculate the difference		= =	232.038 - 232.034 0.004u
Energy released	Е	= = =	mc ² 0.004 x 1.66 x 10 ⁻²⁷ x (3 x 10 ⁸) ² 5.976 x 10 ⁻¹³ J

5) (a) ${}^{2}H + {}^{3}H \rightarrow {}^{4}He + {}^{1}n$ 1 1 2 0

(b) Calculate mass of products and reactants in Kg

Reactants		Products
3.345 x 10 ⁻²⁷ + 5.008 x 3	10 ⁻²⁷ Kg	6.647 x 10 ⁻²⁷ Kg + mass of neutron
8.353 x 10 ⁻²⁷		6.647 x 10 ⁻²⁷ + 1.6605 x 10 ⁻²⁷ x 1.008665
Mass difference		x 10 ⁻²⁷ - 8.321888 x 10 ⁻²⁷ 2 x 10 ⁻²⁹
Energy released E		2 x 10 ⁻²⁹ x (3x10 ⁸) ² x 10 ⁻¹² J